

T:Jobs/2019/J190166 - Menangle Quarry LEC\Technical studies\Groundwater/2020_Modelling\Model output\Heads output\J190166_Calib_graphs_Run_v5-080_FigureHeads.xlsm]Fig1

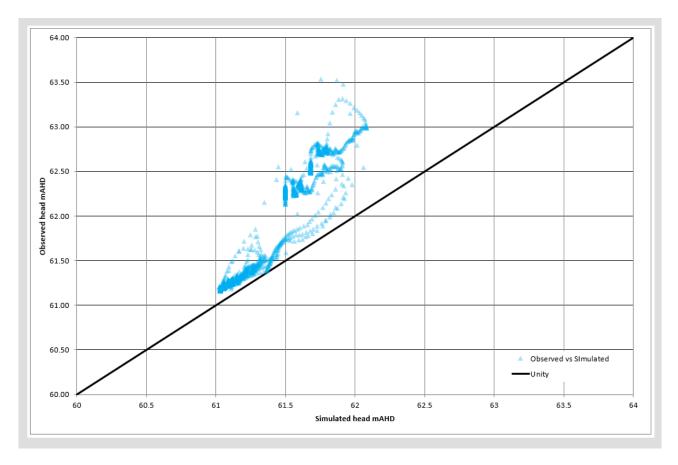



Figure 4.2 - Modelled and measured mounding hydrographs (History Matching)

Figure 4.3 Scatter plot of modelled versus measured hydraulic head

4.4 Sensitivity analysis

A relative composite sensitivity analysis was performed on the calibrated model and the results show that the model is most sensitive to horizontal hydraulic conductivity (model layers 2, 4 and 5) and specific yield of layer 2 (alluvium). Figure 4.4 shows the relative values of the composite sensitivity. The sensitivity of the history-matched model is based on the hydraulic head targets at the site monitoring bores.

As there are no measurements in model layer 1, the sensitivity shows a low relative sensitivity to the parameters of layer 1.

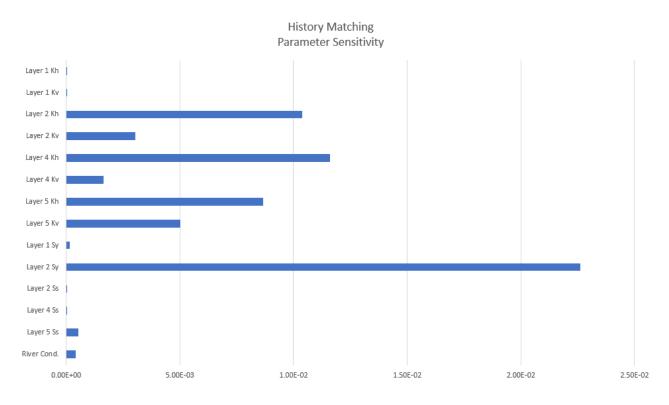
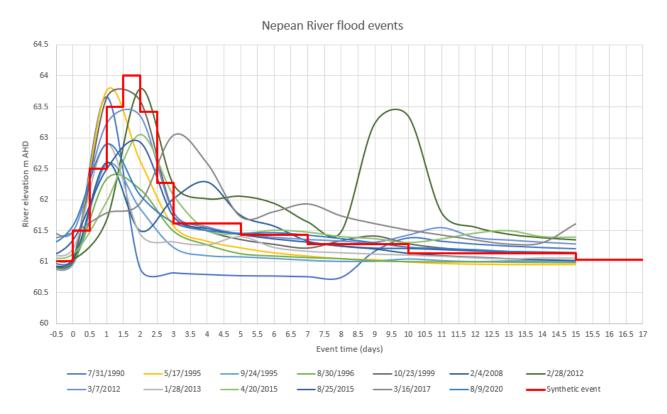


Figure 4.4 Relative composite sensitivity of the history-matched model

5 Predictive scenarios

5.1 Predictive modelling

a Quarry void material properties used in predictive modelling


For the predictive modelling of the proposed project, the following material properties were implemented:

- Hydraulic conductivity: a significant increase in the horizontal and vertical hydraulic conductivity was used to represent void space. A value of 1,000 m/d was assigned to layer 1 in the quarry void areas.
- Specific yield: specific yield was increased to 100% in quarry void areas of model layer 1.

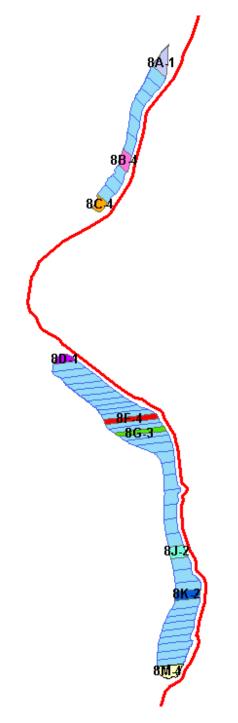
b Boundary conditions

The Nepean River boundary condition simulated a synthetic high flow event, designed to represent the maximum driving head that can cause groundwater interception by the quarry. River level was raised over time to just below the overtopping level of the river banks, at an elevation of 64 mAHD. The base of the proposed quarry was set at an elevation of 62 mAHD, which is 1 m above the long-term average watertable. When river levels are above 64 mAHD, the river overtops the banks and any water captured by the quarry is considered surface water. Therefore, simulation of a river stage higher than modelled would not represent an event requiring licensing of groundwater.

A synthetic river flood event was constructed from a review of measured Nepean River historic high flow events. River level measurements since 1990 indicate that 13 high flow events occurred where the maximum river level was below 64 mAHD. A synthetic flood event was created where the rise and fall of the Nepean River was designed to be consistent with typical historical events, particularly the duration of river level above the base of the quarry floor (62 mAHD). Figure 5.1 shows measured river levels during high flow events, and the synthetic event assigned to the Nepean River boundary condition in the predictive modelling. It was observed that since the end of the Millennium drought (2010), 12 high flow events (with river levels above 62 mAHD but not greater than 64 mAHD) have occurred. Therefore, a high flow event occurred on average 1.2 times per year. As the predictive scenario only simulates one high flow event, rather than an annual duration, the model results have been multiplied by 1.2 to annualise them.

Figure 5.1 Nepean River high flow events since 1990 and the modelled synthetic scenario

c Predictive scenarios


The quarry plan will minimise the open quarry area and active face that is exposed at any one time with progressive backfill of the quarried areas. The project quarry areas (substages 8A to 8M) were subdivided into four sections (1, 2, 3 and 4) that represent areas of quarry that are active at any time and to represent the open area of the quarry consistent with the progressive backfilling approach. For example, area 8A is subdivided into A-1, A-2, A-3 and A-4. All simulated quarry areas have the same pit floor elevation (62 mAHD).

EMM initially selected four predictive scenarios to allow estimates of a range of inflows to the quarry based on active quarry area:

- Scenario 1: quarrying from the subdivision area longest parallel to the Nepean River (Area 8B-4, refer Figure 5.2);
- Scenario 2: quarrying from the largest of the subdivided areas (Area 8F-4, refer Figure 5.2);
- Scenario 3: quarrying from the smallest of the subdivided areas (Area 8C-4, refer Figure 5.2); and
- Scenario 4: quarrying from the subdivided area shortest parallel to the Nepean River (Area 8G-3, refer Figure 5.2).

Figure 5.2 shows the locations of the simulated quarry area for the various predictive modelling scenarios. While reviewing the total inflow data, it was observed that location 8C-4 (Scenario 3), the smallest of the subdivided area, showed the highest inflow volumes. The reason for this may relate to the location of the quarry area relative to the river, where the quarry allows a longer interaction length (eastern and southern faces of the quarry) between the quarry and river. As such, four additional scenarios were simulated as part of the predictive modelling:

- Scenario 5: the northern cell in the north section of the quarry (Area 8A-1, refer Figure 5.2);
- Scenario 6: the northern cell in the southern section of the quarry (Area 8D-1, refer Figure 5.2);
- Scenario 7: the southern cell in the southern section of the quarry (Area 8M-4, refer Figure 5.2); and
- Scenario 8: a quarry cell that is closest to the mean size of all subdivided areas (Area 8K-2, refer Figure 5.2).

Figure 5.2 Quarry pit locations simulated in predictive modelling

5.2 Predictive uncertainty analysis

A single 'true' model cannot be constructed due to the inherent uncertainty that exists within hydrogeological systems, which is introduced by effects of error in field measurements, conceptual, spatial and temporal simplifications (Barnett et al 2012). To better understand how the prediction results may vary due to uncertainty within the system, a simple uncertainty analysis has been carried out. This is in the form of 'scenario analysis with subjective probability' as defined by the IESC explanatory note on Uncertainty Analysis (Middlemis and Peeters 2018). The main advantage of this kind of 'what-if' analysis is that it is straight forward to implement and communicate to stakeholders, and it is less computationally demanding compared to some other approaches. This approach is viewed as appropriate for this low-risk project.

The following uncertainty analysis was performed, which was guided by the relative composite sensitivity analysis that was performed on the history matching model (Section 4.4). The predictive uncertainty analysis was performed on the quarry cell that showed the highest predicted inflow during the simulated flood event.

Five predictive uncertainty models were generated based on the following changes to hydraulic parameters:

- Uncertainty 1 increase the hydraulic conductivity in the alluvium by 25%;
- Uncertainty 2 reduce the hydraulic conductivity in the alluvium by 25%;
- Uncertainty 3 increase the specific yield to 10% (twice the history-matched value);
- Uncertainty 4 reduce the specific yield to 2.5% (half the history-matched value); and
- Uncertainty 5 a combination of #1 and #4 above.

6 Results

The model predicted inflow volumes are presented in Table 6.1. The modelled inflow volumes are calculated from the change in storage of Layer 1 (quarry layer) over the quarry area for each simulation. As the predictive model duration only covers one flood event, rather than an annual period, the model results have been multiplied by 1.2 to represent an indicative annual inflow amount, consistent with the requirement for licensing.

The scaled modelled inflow volumes range from 4 kL/yr to 408 kL/yr (up to 0.4 ML/yr).

Scenario	Quarry area	Modelled inflow volumes (kL)	Scaled inflow volumes (kL/yr)
1	8B-4 – longest along Nepean River	97	116
2	8F-4 – largest area	55	66
3	8C-4 – smallest area and southern end of southern area	214	257
4	8G-3 – shortest along Nepean River	26	31
5	8A-1 – Northern end of northern area	38	46
6	8D-1 – Northern end of southern area	28	34
7	8M-4 – Southern end of southern area	340	408
8	8K-2 – average area	3	4

The predictive uncertainty analysis was conducted on Scenario 7 (Area 8M-4), as it has the highest predicted inflow during the simulated high flow event. Table 6.2 shows the results of the predictive uncertainty analysis.

Table 6.2 Predictive uncertainty analysis – Area 8M-4 predicted inflow volumes

Uncertainty run #	Model changes	Modelled results (kL)	Scaled volumes (kL/yr)
1	Increase alluvium hydraulic conductivity by 25%	460	552
2	Decrease alluvium hydraulic conductivity by 25%	220	264
3	Increase specific yield to 10%	191	229
4	Decrease specific yield to 2.5%	463	556
5	Alluvium K values up by 25% and Sy down to 2.5%	592	710

The model results show a large range in the predicted inflow volumes, with the predicted inflow volumes for Area 8M-4 ranging from 229 kL/yr to 710 kL/yr, compared to the base case (ie using history-matched parameter values) of 408 kL/yr. For example, a 25% increase in alluvium hydraulic conductivity results in a 35% increase in predicted inflows.

7 Summary

The groundwater model was constructed based on limited regional data, and was history matched on the 3 months of available hydraulic site data. The model will be updated following the collection of 12 months of monitoring data, in June 2021.

Based on preliminary Stage 1 modelling, the project will require an annual licence allocation to cover the peak predicted inflow volume of 410 kL/yr (0.4 ML/yr) for a high flow event (river level up to 64 mAHD). However, based on the uncertainty of the hydraulic conductivities in the area, and potential uncertainty in the geological surfaces used in the model (see below), the inflow volumes may reach 710 kL/yr (0.7 ML/yr).

8 Limitations

Numerical simulation of the hydrogeological regime at the Menangle Sand and Soil Quarry area has limitations that reflect the complexity of the groundwater systems, the influence of the adjacent Nepean River, the scope and timing of the project, data availability and the restrictions imposed by the software. The main limitations are as follows:

- Any faults, bedding planes and fracture/joint planes have not been represented as discrete features due to limitations of available detailed structural and/or hydraulic information related to these potential features. This simplification means that the influence of these heterogeneities (preferential pathways or secondary porosities) is not be captured, which may be locally important in controlling flux distribution.
- Any local mining operations (BHP, South32 and others) are not explicitly simulated. In reality, mine planning and associated dewatering and depressurisation may have changed, which could influence predictions for the Menangle Quarry area.
- The model layers represent the hydrostratigraphy in the area of the Menangle Quarry. These data were collected from the WaterNSW and MinView databases for water drill points and for mine drill data, respectively.
- Model history-matching included site-specific hydraulic head data at Menangle and publicly available data from WaterNSW for the Nepean River weir at Menangle. However, there are information gaps related to bore construction and screened lithological unit for some publicly available data, as such these data are not vetted in terms of accuracy of groundwater elevations.
- The model does not consider backfill operations, however it is planned that the pits will be backfilled to an elevation of 64 mAHD such that they will no longer intercept groundwater during times of high river levels.
- The groundwater model does not simulate the removal of water from the excavation of alluvium material.
- The groundwater model did not simulate all quarry areas, a representative sampling of quarry areas was used to generate a range of potential inflow volumes.
- Potential density-dependent flow is assumed to be negligible in the model. The salinity levels at the site do not warrant that their effects to be simulated.
- Contaminant fate and transport modelling are not part of the modelling scope.
- Simulation of quarry water management is limited to reporting of the amount of the groundwater intercepted from the rise of the Nepean River in active quarrying areas.
- Waste stockpiles and other stockpiles were not simulated.
- Quantification of baseflow or river leakage will not be included as part of history-matching or the modelling of the proposed project.
- Impacts of local climatic or weather variations were not modelled.
- Topography used in the groundwater model is based on a 1 second (~30 m) digital elevation model (DEM) dataset from Geoscience Australia based on Shuttle Radar Topography Mission (SRTM).

References

Anderson MP and Woessner WM, 1991. Applied groundwater modeling. First edition. Academic Press.

Barnett B, Townley LR, Post V, Evans RE, Hunt RJ, Peeters L, Richardson S, Werner AD, Knapton A and Boronkay A 2012, *The Australian Groundwater Modelling Guidelines*, National Water Commission.

EMM Consulting Pty Ltd 2018, Hume Coal Project Response to Submissions Appendix 2 Revised water impact assessment report, dated 27 June 2018.

2020a, Monitoring bore installation and testing program, prepared for the Menangle Sand and Soil Pty Ltd. dated 22 June 2020.

2020b, Groundwater assessment – Burrawang to Avon Tunnel project, prepared for WaterNSW, dated 25 May 2020.

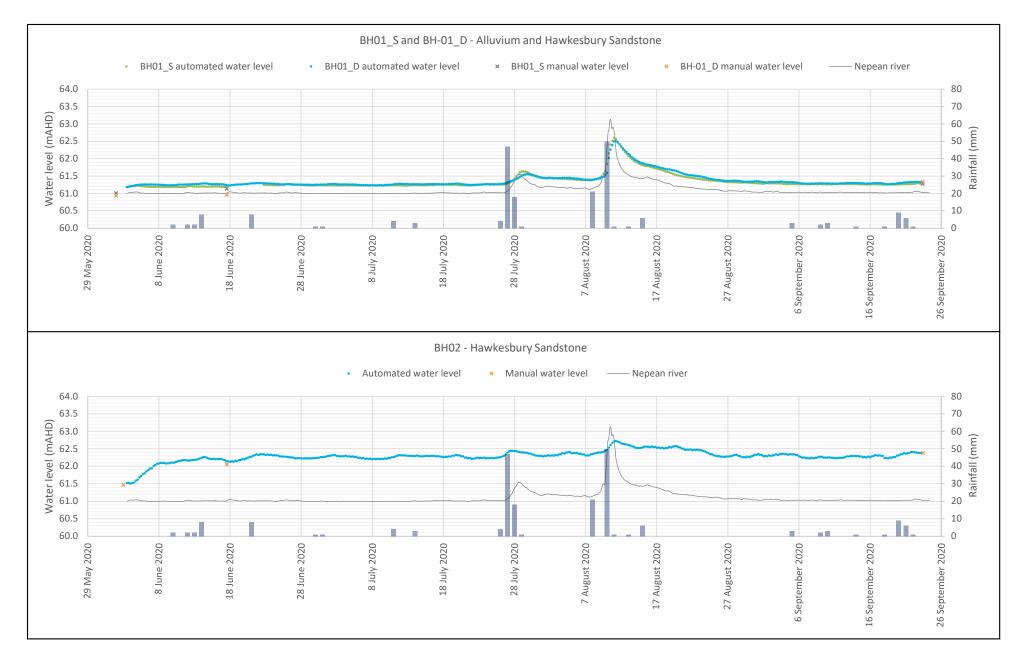
2020c, Hume Coal Project and Berrima Rail Project – Response to Submissions Volume 2D Appendix F Revised groundwater modelling, June 2018.

ESI 2017, Groundwater Vistas, version 7.

Herron NF, McVicar TR, Rohead-O'Brien H, Rojas R, Rachakonda PK, Zhang YQ, Dawes WR, Macfarlane C, Pritchard J, Doody T, Marvanek SP and Li LT 2018, Context statement for the Sydney Basin bioregion. Product 1.1 from the Sydney Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/SSB/SSB/1.1.

Merrick N and Webb L 2020, Menangle Sand & Soil Pty Ltd -v- Minister for Planning Land & Environment Case 2018/342158 Joint Expert Report on Groundwater, dated 23 June 2020.

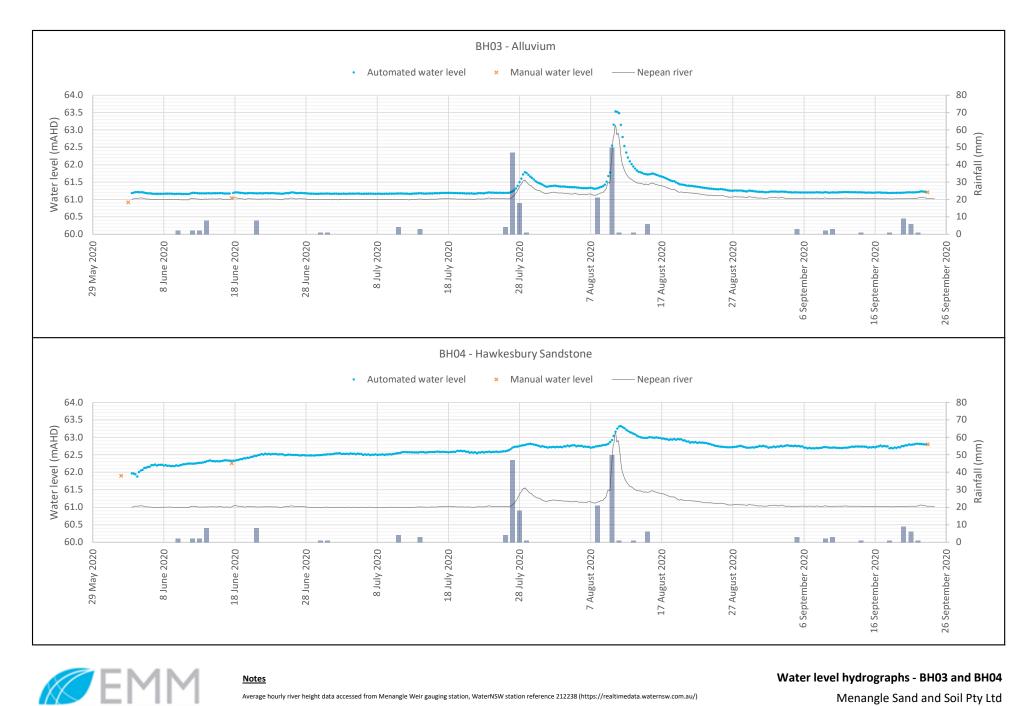
Middlemis H and Peeters LJM 2018, *Uncertainty analysis – Guidance for groundwater modelling within a risk management framework*, prepared for the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development through the Department of the Environment and Energy, Commonwealth of Australia 2018. www.iesc.environment.gov.au/publications/information-guidelines-explanatory-note-uncertainty-analysis


Panday, Sorab, Langevin, C.D., Niswonger, R.G., Ibaraki, Motomu, and Hughes, J.D., 2013, MODFLOW-USG version 1: *An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation*: U.S. Geological Survey Techniques and Methods, book 6, chap. A45, 66 p.

Rau GC, Arcworth RI, Halloran LJS, Timms WA, Cuthbert MO, 2018 Quantifying compressible groundwater storage by combining cross-hole seismic surveys and head response to atmospheric tides. Journal of Geophysical Research: Earth Surface, 123, 1910-1930. <u>Https://doi.org/10.1029/2018JF004660</u>.

Appendix A

Hydrographs


<u>Notes</u>

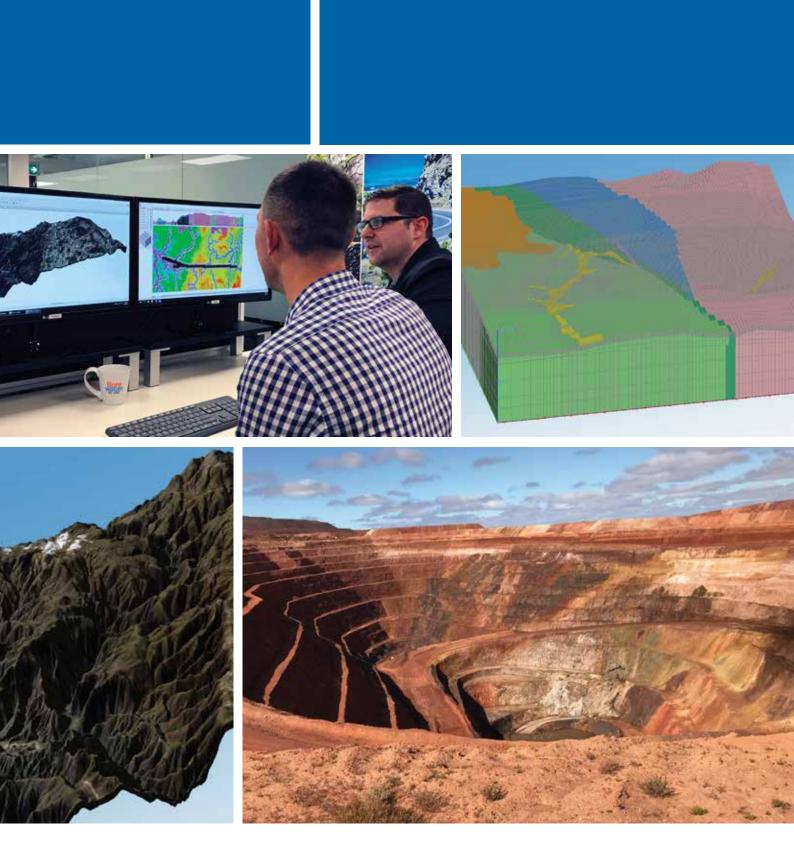
Water level hydrographs - BH01_S, BH01_D and BH02

Average hourly river height data accessed from Menangle Weir gauging station, WaterNSW station reference 212238 (https://realtimedata.waternsw.com.au/)

Menangle Sand and Soil Pty Ltd

Daily rainfall data accessed from Menangle Bridge monitoring station, BoM reference 68216. (http://www.bom.gov.au/climate/data/)

Menangle Sand and Soil Pty Ltd


Average hourly river height data accessed from Menangle Weir gauging station, WaterNSW station reference 212238 (https://realtimedata.waternsw.com.au/)

Daily rainfall data accessed from Menangle Bridge monitoring station, BoM reference 68216. (http://www.bom.gov.au/climate/data/)

Notes

Figure A.2

www.emmconsulting.com.au

www.emmconsulting.com.au

Appendix D

Groundwater Monitoring and Modelling Update - July 2021

Memorandum

23 September 2021

 To: Ernest Dupere Director Benedict Industries Pty Ltd
 From: Henry Noakes
 Subject: Groundwater monitoring and modelling update - July 2021

Dear Ernest,

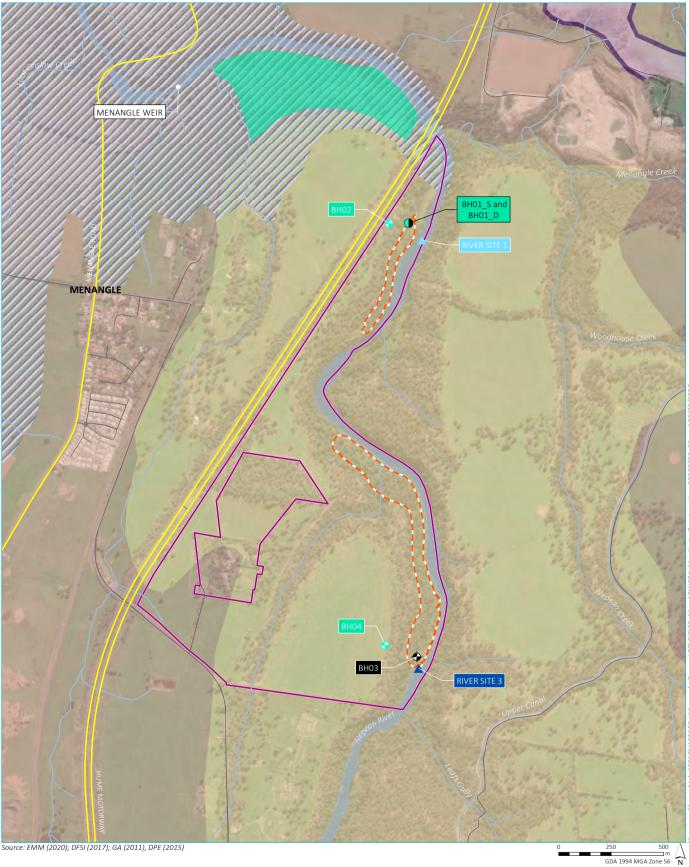
1 Introduction

Menangle Sand and Soil Quarry (the quarry) is located at 15 Menangle Road, Menangle NSW (refer Figure 2.1). The quarry extracts sand and soil along the Nepean River as approved by Development Consent 85/2865 (the Consent), granted by the Minister for Planning on 15 November 1989, and as modified (Modification 1) by the NSW Land and Environment Court in September 2020.

This memorandum presents the June 2021 groundwater monitoring results and subsequent groundwater model/site water balance update. It has been prepared for Menangle Sand and Soil Pty Ltd by EMM Consulting Pty Limited (EMM). It addresses monitoring requirements of the *Menangle Sand and Soil Quarry Soil and Water Management Plan* (SWMP) (EMM 2021a) and conditions B25(b) and B25(c) of the Consent that require Menangle Sand and Soil to:

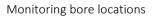
- update the groundwater model following collection of the first 12 months of data collected from 17 June 2020 to 16 June 2021; and
- incorporate the outputs of the groundwater model into the Site Water Balance as required under condition B36(c)(i) of Schedule 2 [within the conditions].

2 Monitoring


2.1 Fieldwork

The following fieldwork was undertaken on 18 June 2021 in accordance with the SWMP, Section 6: Groundwater management (refer Figure 2.1):

- manual groundwater level measurement (dip) and download of automated groundwater level loggers (loggers) at five groundwater monitoring bores (BH01_S, BH01_D, BH02, BH03 and BH04);
- collection of water samples in five bores (BH01_S, BH01_D, BH02, BH03 and BH04) and two surface water sites, within the adjacent Nepean River (River site 1 and River site 3) to:
 - assess physico-chemical parameters (temperature, pH, electrical conductivity, total dissolved solids, reduction potential and dissolved oxygen) using a calibrated YSI water quality meter; and
 - submit to a NATA accredited laboratory for analytical testing suites, comprising:


- general water quality (pH, electrical conductivity[EC], total dissolved solids, hardness and alkalinity); and
- major ions (calcium, chloride, fluoride, sodium, magnesium, potassium, sulfate and an ionic balance).

At the time of the fieldworks (18 June 2021), quarrying activities had not begun within the Stage 8 extraction area (refer Figure 2.1).

KEY

- Study area
- Menangle Quarry Stage 7
- Proposed extraction area
- Main road
- ----- Local road
- Watercourse/drainage line
- 🔶 Borehole sandstone
- Borehole alluvium & sandstone
- 🔺 Surface water quality
- Surface water quality and level
- Surface geology
- Ashfield shale
- Bringelly shale
 - Hawkesbury sandstone
 - Minchinbury sandstone

Menangle Quarry Extension Groundwater monitoring and modelling update - July 2021 Figure 2.1

2.2 Groundwater level

A summary of groundwater dips and groundwater level trigger values (EMM 2021a) is provided in Table 2.1. Time series data of the groundwater level in each bore is provided in Figure 2.2–Figure 2.3.

Table 2.1Groundwater levels

Bore ID Screened lithology		Groundwater lev	rel (18 June 2021)	³ Groundwater low level trigger value	Exceedance
		¹ mbtoc	² mAHD	² mAHD	
BH01_S	Alluvium	5.52	61.22	59.27	No
BH01_D	Hawkesbury Sandstone	5.84	61.20	59.29	No
BH02	Hawkesbury Sandstone	25.18	62.44	60.29	No
BH03	Alluvium	4.56	61.15	59.2	No
BH04	Hawkesbury Sandstone	42.70	63.22	60.7	No

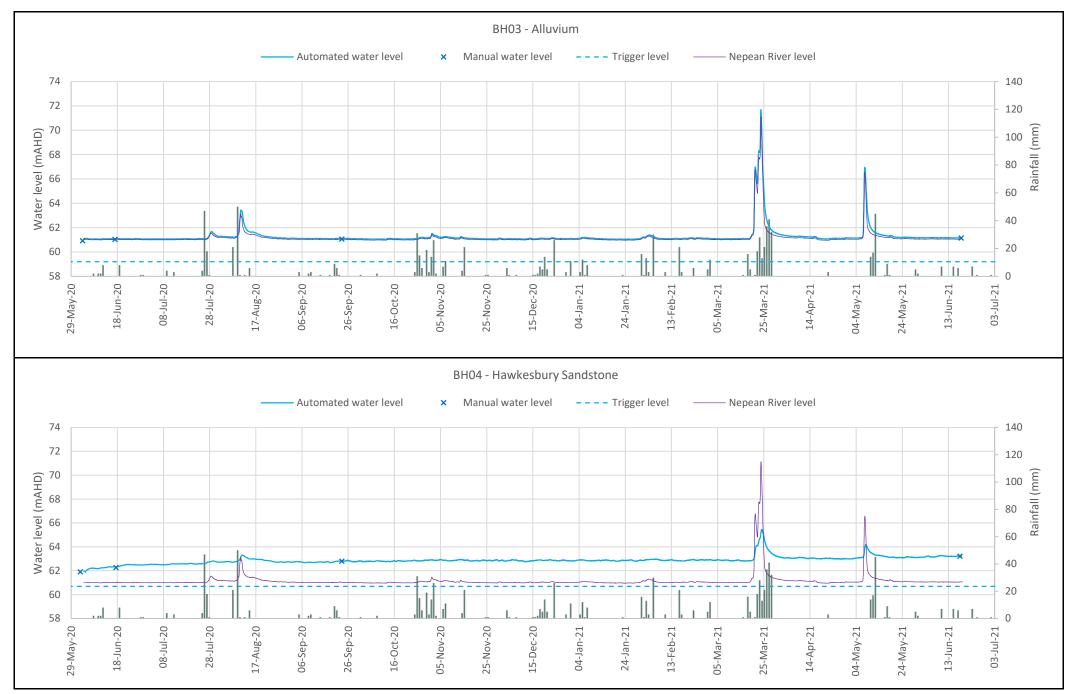
1. metres below top of casing (mbtoc);

2. metres above Australian Height Datum;

3. (EMM 2021b)

There was a flood event on 23 March 2021 (to a maximum level of 71.122 m at Menangle Weir). It appears that the barometric data logger (barologger) was inundated from 22 to 24 March 2021. Evidence of flooding above the barologger was noted by field staff (flood debris, fallen timber, rubbish, sediment build-up and broken foliage). Barometric data during this period is considered unreliable and has been inferred from historical data. The barologger appears to be fully functioning following 24 March 2021.

No groundwater level exceedances were observed over the monitoring period (3 June 2020–18 June 2021).



Time series data - BH01_S, BH01_D and BH02

Average hourly river height data accessed from Menangle Weir gauging station, WaterNSW station reference 212238 (https://realtimedata.waternsw.com.au/)

Menangle Sand and Soil Pty Ltd

Notes

EMM

Notes

Time series data - BH03 and BH04

Average hourly river height data accessed from Menangle Weir gauging station, WaterNSW station reference 212238 (https://realtimedata.waternsw.com.au/)

Menangle Sand and Soil Pty Ltd

Figure 2.3

2.3 Groundwater sampling

Groundwater sampling was undertaken by a suitably qualified and experienced EMM hydrogeologist, using either a 'Micro-purge' low flow bladder pump (BH01_S and BH01_D) or stainless-steel bailer (BH02, BH03 and BH04). Sampling was undertaken in general accordance with:

- Approved Methods for the Sampling and Analysis of Water Pollutants in NSW (DEC 2004); and
- Australia/New Zealand Standard AS/NZS 5667.11:1998 Water Quality Sampling, Part 11: Guidance on Sampling of Groundwaters (Standards Australia 1998).

A summary of groundwater pH and EC is provided in Table 2.2 with associated trigger values (EMM 2021a), exceedances have been highlighted. Laboratory certificates of analysis are attached as Appendix B. Field sampling records are attached as Appendix C.

		EC trigger va	alue¹(µS/cm)	EC June 2	021 (µS/cm)	pH tri	gger value	pH.	June 2021
Site ID	Screened lithology	Lower limit	Upper limit	Field	Laboratory	Lower limit	Upper limit	Field	Laboratory
BH01_S	Alluvium	125	2,500	227.2	218.0	6.5	8.0	5.23	6.03
BH01_D	Hawkesbury Sandstone	125	3,000	1,217.0	1,310.0	6.5	8.0	6.62	7.35
BH02	Hawkesbury Sandstone	125	10,000	7,091.0	8,230.0	6.5	8.5	5.80	6.61
BH03	Alluvium	125	2,500	314.1	141.0	6.5	8.0	5.73	5.90
BH04	Hawkesbury Sandstone	125	12,000	6,864.0	8,460.0	6.5	8.5	6.52	7.42

Table 2.2 Groundwater pH and EC summary (including trigger values)

Notes: 1. (EMM 2021a)

Results indicate groundwater is typically acidic (with the exception of laboratory pH results at BH01_D [pH 7.35] and BH04 [pH 7.42]). Field pH results in BH01_S, BH02 and BH03 were below the lower limit trigger level. Laboratory pH results exceeded lower trigger values in BH01_S and BH03 however, did not exceed in BH02. In accordance with Table 6.6 of the SWMP (EMM 2021a), groundwater quality data will continue to be monitored and assessed.

Higher EC is noted in the Hawkesbury Sandstone (marginal salinity in BH01_D to slightly saline in BH04) compared to the alluvium (fresh in both BH01_S and BH03). No EC trigger value exceedances were recorded in the June 2021 monitoring event.

An obstruction was encountered in BH03, approximately 7 metres below top of casing (mbTOC). A groundwater sample could not be obtained from within the screen interval at BH03 (20–23 mbTOC), in accordance with recommendations provided by *Water quality - Sampling, Part 11: Guidance on Sampling of Groundwaters* Standards Australia (1998). A grab sample was recovered from approximately 6–7 mbTOC and is considered representative; however, BH03 will be assessed during the next site visit using smaller diameter sample equipment.

A summary of groundwater major ion results is provided in Table 2.2. Additional water sampling results are attached as Appendix A. Laboratory certificates of analysis are attached as Appendix B.

Table 2.3Groundwater major ion summary

Site ID	Screened lithology	Hardness (mg/L)	Alkalinity (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sodium (mg/L)	Magnesiu m (mg/L)	Potassium (mg/L)	Sulfate (mg/L)	Cations (meq/L)	Anions (meq/L)	lonic balance (%)
BH01_S	Alluvium	38	30	7	29	<0.1	28	5	<1	30	1.98	2.04	-
BH01_D	Hawkesbury Sandstone	130	322	34	172	0.4	210	11	6	120	11.9	13.8	7.38
BH02	Hawkesbury Sandstone	1,140	392	151	2,700	0.6	1,200	185	12	389	75.3	92.1	10.0
BH03	Alluvium	40	8	11	24	<0.1	16	3	2	17	1.54	1.19	-
BH04	Hawkesbury Sandstone	1,180	454	110	2,700	0.4	1,160	219	32	300	74.8	91.5	10.0

3 Groundwater model update

3.1 Groundwater model and site water balance update

A preliminary groundwater model was constructed in March 2021 (EMM 2021b) in accordance with conditions B24 and B25(a) of the Consent:

- using a variant of MODFLOW standard software, or equivalent software, to quantify the progressive takes from water sources during Quarrying Operations in the Stage 8 area (Figure 2.1); and
- using the first three months of groundwater monitoring data.

The initial modelling, employing a subjective uncertainty analysis approach, predicted annual groundwater interception to range up to 0.7 ML/year from within the Sydney Basin Nepean Groundwater Source (Management Zone 2).

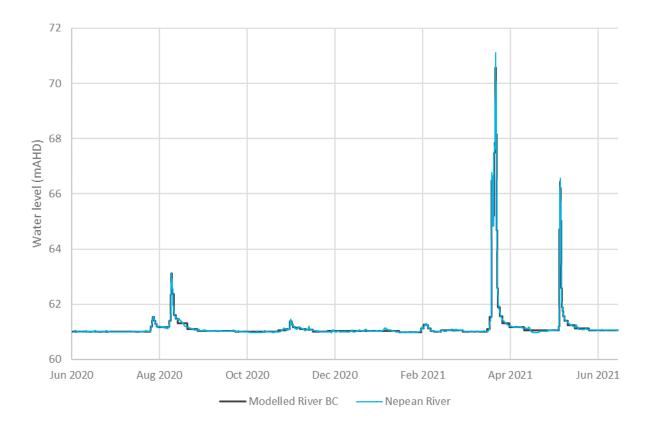

In order to perform a validation of the existing numerical groundwater model, built using MODFLOW-USG (Panday et al 2013) and Groundwater Vistas 7 (ESI 2017), an extension to the history-matching period was made. The extended model stress period setup and stages assigned to the River (RIV) package boundary conditions used to simulate the Nepean River (based on Menangle Weir station 212238) are presented in Table 3.1 and Figure 3.1.

Table 3.1 Stress periods and river representation

Stress period/s	Date range	Duration (d)	River stage (mAHD)	Description
1	n/a	Steady state	61.009	Initialisation
2	3 Jun 2020 (12:00) to 26 Jul 2020 (12:00)	53	61.009	Steady river
3–5	26 Jul 2020 (12:00) to 28 Jul 2020 (12:00)	0.6667 (each)	61.053, 61.194, 61.428	Rising river
6	28 Jul 2020 (12:00) to 28 Jul 2020 (24:00)	0.5	61.538	Steady river (peak)
7-9	28 Jul 2020 (24:00) to 31 Jul 2020 (24:00)	1 (each)	61.405, 61.271, 61.185	Falling river
10	31 Jul 2020 (24:00) to 8 Aug 2020 (06:00)	7.25	61.165	Steady river
11–13	8 Aug 2020 (06:00) to 10 Aug 2020 (12:00)	0.708 (each)	61.203, 61.4, 62.359	Rising river
14	10 Aug 2020 (12:00) to 10 Aug 2020 (14:00)	0.1667	63.118	Steady river (peak)
15–17	10 Aug 2020 (14:00) to 14 Aug 2020 (14:00)	1.333 (each)	62.373, 61.614, 61.465	Rapidly falling river
18–19	14 Aug 2020 (14:00) to 28 Aug 2020 (14:00)	7 (each)	61.318, 61.109	Slowly falling river
20	28 Aug 2020 (14:00) to 23 Sep 2020 (14:00)	26.25	61.034	Steady river
21	23 Sep 2020 (19:00) to 23 Oct 2020 (19:00)	30	60.996	Steady river
22	23 Oct 2020 (19:00) to 28 Oct 2020 (19:00)	5	61.059	Rising river
23	28 Oct 2020 (19:00) to 31 Oct 2020 (19:00)	3	61.092	Rising river
24-25	31 Oct 2020 (19:00) to 2 Nov 2020 (19:00)	1 (each)	61.370, 61.261	Steady river (peak)
26	2 Nov 2020 (19:00) to 4 Nov 2020 (19:00)	2	61.170	Falling river
27	4 Nov 2020 (19:00) to 7 Nov 2020 (19:00)	3	61.142	Falling river
28	7 Nov 2020 (19:00) to 11 Nov 2020 (19:00)	4	61.100	Falling river
29	11 Nov 2020 (19:00) to 16 Nov 2020 (19:00)	5	61.083	Steady river
30	16 Nov 2020 (19:00) to 26 Nov 2020 (19:00)	10	61.014	Steady river
31	26 Nov 2020 (19:00) to 26 Dec 2020 (19:00)	30	61.018	Steady river
32	26 Dec 2020 (19:00) to 15 Jan 2021 (19:00)	20	61.040	Steady river

Table 3.1Stress periods and river representation

Stress period/s	Date range	Duration (d)	River stage (mAHD)	Description
33	15 Jan 2021 (19:00) to 30 Jan 2021 (19:00)	15	60.984	Steady river
34-35	30 Jan 2021 (19:00) to 3 Feb 2021 (19:00)	2 (each)	61.128, 61.258	Rising river
36	3 Feb 2021 (19:00) to 4 Feb 2021 (19:00)	1	61.236	Steady river (peak)
37-38	4 Feb 2021 (19:00) to 8 Feb 2021 (19:00)	2 (each)	61.119, 61.035	Falling river
39	8 Feb 2021 (19:00) to 13 Feb 2021 (19:00)	5	61.015	Steady river
40	13 Feb 2021 (19:00) to 28 Feb 2021 (19:00)	15	61.051	Steady river
41	28 Feb 2021 (19:00) to 17 Mar 2021 (19:00)	17	61.015	Steady river
42	17 Mar 2021 (19:00) to 19 Mar 2021 (19:00)	2	61.089	Steady river
43	19 Mar 2021 (19:00) to 20 Mar 2021 (19:00)	1	61.542	Rising river
44–46	20 Mar 2021 (19:00) to 21 Mar 2021 (13:00)	0.25 (each)	64.441, 66.491, 66.560	Rising river
47–54	21 Mar 2021 (13:00) to 25 Mar 2021 (13:00)	0.5 (each)	65.639, 65.206, 67.475, 67.866, 70.559, 68.148,64.671, 62.582	Rising river, falling river
55	25 Mar 2021 (13:00) to 26 Mar 2021 (13:00)	1	61.896	Falling river
56	26 Mar 2021 (13:00) to 28 Mar 2021 (13:00)	2	61.564	Falling river
57	28 Mar 2021 (13:00) to 2 Apr 2021 (13:00)	5	61.309	Falling river
58	2 Apr 2021 (13:00) to 12 Apr 2021 (13:00)	10	61.167	Steady river
59	12 Apr 2021 (13:00) to 6 May 2021 (13:00)	24	61.041	Steady river
60	6 May 2021 (13:00) to 7 May 2021 (01:00)	0.5	61.202	Rising river
61–69	7 May 2021 (01:00) to 9 May 2021 (07:00)	0.25 (each)	62.281, 64.731, 66.435, 66.217, 65.023, 63.652, 62.577, 62.067, 61.892	Rising river, falling river
70	9 May 2021 (07:00) to 9 May 2021 (19:00)	0.5	61.742	Falling river
71	9 May 2021 (19:00) to 10 May 2021 (19:00)	1	61.564	Falling river
72	10 May 2021 (19:00) to 12 May 2021 (19:00)	2	61.404	Falling river
73	12 May 2021 (19:00) to 17 May 2021 (19:00)	5	61.248	Falling river
74	17 May 2021 (19:00) to 27 May 2021 (19:00)	10	61.113	Steady river
75	27 May 2021 (19:00) to 16 Jun 2021 (19:00)	20	61.061	Steady river

Figure 3.1 Modelled and measured Nepean River stage

3.2 Validation Performance

The history-matching performance of the groundwater model over the extended historical validation period was evaluated statistically and by comparing dynamic trends of modelled and measured groundwater responses.

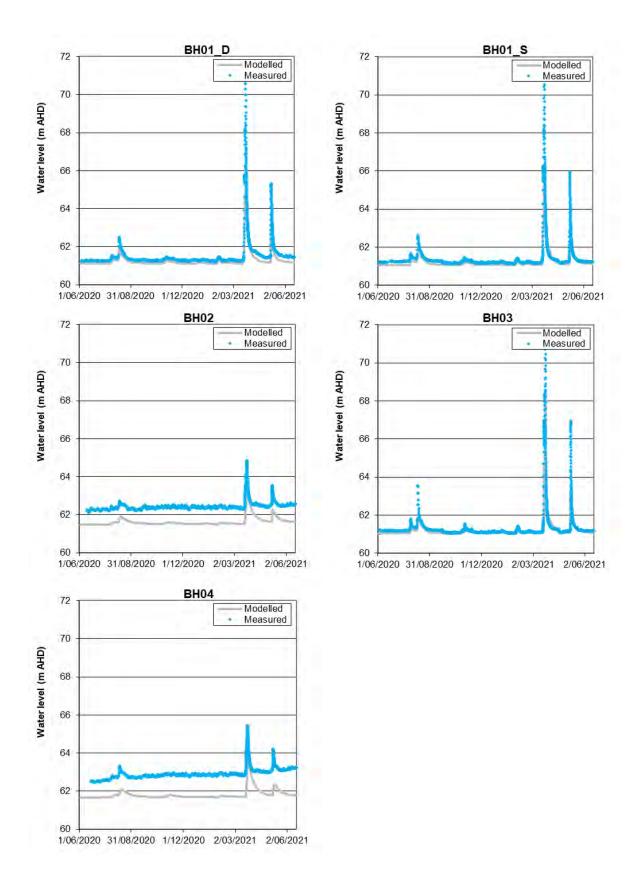

Statistical measures of the match between modelled and measured groundwater responses over the initial calibration periods (~3.5 months of groundwater monitoring) and the extended validation period (~12 months of groundwater monitoring) are provided in Table 3.2.

Figure 3.2 presents modelled and measured hydraulic head at the site groundwater monitoring bores (BH01–BH04). Figure 3.3 illustrates these same data when converted to drawdown relative to the pseudo steady state period, inferred from the first ~1.5 months of groundwater monitoring, during which there were no significant rises in Nepean River level.

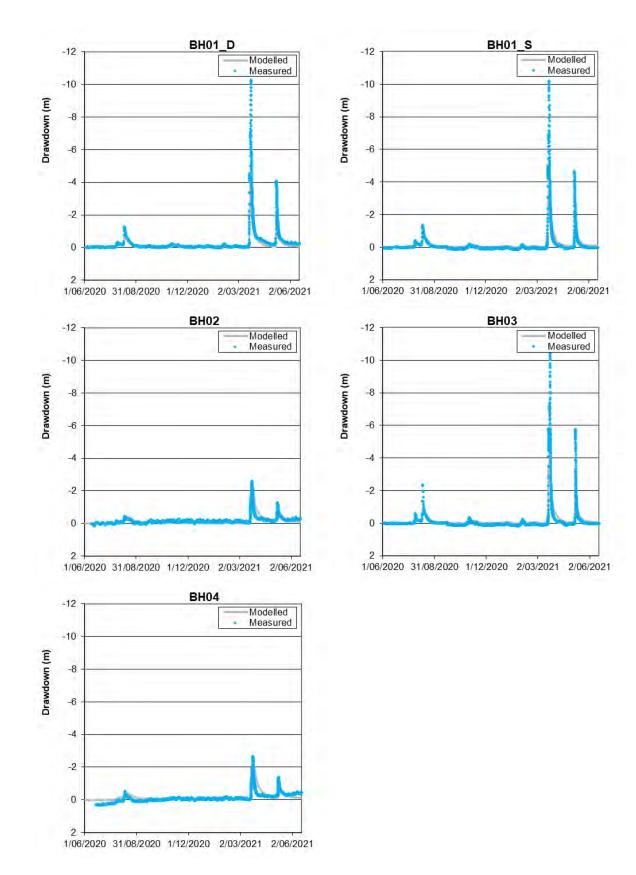

Overall, history-matching to the extended 12-month historical dataset is similar to the performance of the initial calibration over 3.5 months. The very high river level events of early 2021 did lead to an increase in the largest residuals between modelled and measured values, but these events likely involved overtopping of the river-bank which is not represented by the model. Normalised statistical measures of performance for both head and drawdown are improved with the 12-month dataset relative to the first 3.5 months. The trends in modelled responses to high river level events, presented in the hydrographs in Figure 3.2 and Figure 3.3, closely match those measured.

Table 3.2History-matching statistics

Measure	~3.5 months of monitoring	~12 months of monitoring
SRMS (head)	22.7%	7.5%
SRMS (drawdown)	4.6%	3.0%
Average residual (head)	0.42 m	0.51 m
Average absolute residual (head)	0.42 m	0.55 m
Average residual (drawdown)	0.017 m	0.006 m
Average absolute residual (drawdown)	0.058 m	0.134 m

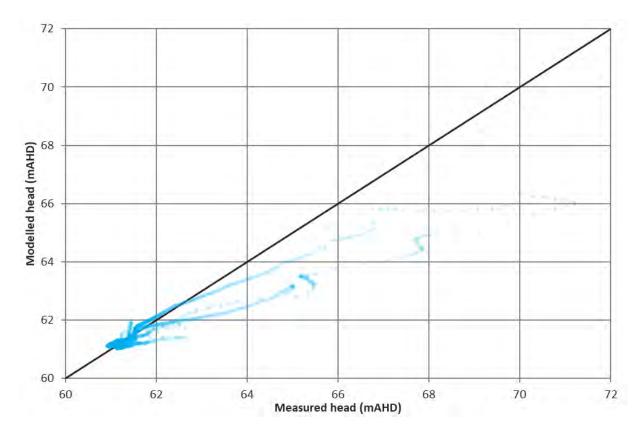


Figure 3.4 Scatter plot of modelled versus measured hydraulic head

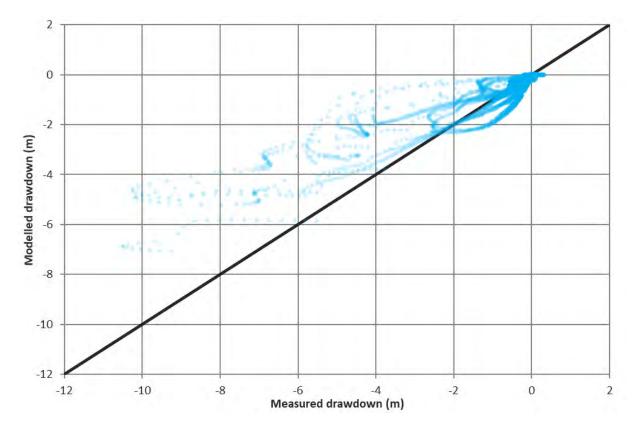


Figure 3.5 Scatter plot of modelled versus measured drawdown

3.3 Summary

The initial 3.5-month groundwater monitoring dataset from five monitoring locations used to calibrate the numerical groundwater model has been extended to 12 months. Extension of the numerical model simulation period and comparison of model results against measured groundwater responses over the 12 months of groundwater monitoring have validated the model. Therefore, the modelling presented in EMM (2021), including maximum predicted groundwater interception of 0.4 ML/yr for the base case and 0.7 ML/yr from the uncertainty analysis, are deemed to be valid. Given the performance of the model over the extended monitoring period, and its inclusion of high river levels relevant to the objective of licensing groundwater interception by pit voids, no further update to the modelling is recommended.

4 Site water balance model update

As summarised in Section 3.3, the modelled groundwater inflows presented in Section 5.3 of the SWMP are considered applicable and no update to the 'Groundwater inflow to Stage 8 area' component of site water balance model is required. The relevant site water balance model is re-produced from the SWMP in Table 4.1.

Table 4.1 Summary of site water balance results

Water management component	Typical dry year (ML/year)	Median rainfall year (ML/year)	Typical wet year (ML/year)
Annual rainfall (mm/year)	443	730	916
Inputs			
Direct rainfall onto storages and catchment runoff	27	49	73
Nepean River water supply	116	90	82
Groundwater inflow to Stage 8 area	0.7	0.7	0.7
Total inputs	144	140	156
Outputs			
Evaporation	16	13	14
Infiltration (infiltration area, seepage from Stage 8 area)	10	19	28
Process water (dust suppression, timber plant, truck washdown)	86	76 ¹	77
Water lost in product (wash water)	33	33 ²	33
Overflows from processing area	0	0	2
Total outputs	145	141	154
Change is storage	-1	-1	2
	0	0	0

1. See Table 5.3 (EMM 2021a): dust suppression + timber plant + truck washdown = 77 ML/year, with rounding difference

2. See Table 5.3 (EMM 2021a): washing = 33 ML/year

5 Closing

This letter describes updates to the groundwater model following collection of the first 12 months of data collected and the site water balance, thereby addressing the requirements of Conditions B25(b) and B25(c) of the Consent. The predicted groundwater interception is unchanged and no changes to the site water balance are required.

Yours sincerely

Henry Noakes Senior Hydrogeologist hnoakes@emmconsulting.com.au

6 References

Australia/New Zealand Standard AS/NZS 5667.11:1998 Water Quality – Sampling – Part 11, Guidance on Sampling of Groundwaters (1998).

Bureau of Meteorology (BOM) 2009, *Climate data online*. 19 August 2009, accessed 9 September 2021. http://www.bom.gov.au/climate/data/.

Department of Environment and Conservation (DEC) 2004, *Approved Methods for the Sampling and Analysis of Water Pollutants in NSW*. Department of Environment and Conservation NSW.

EMM Consulting Pty Ltd (EMM) 2021a, *Menangle Sand and Soil Quarry - Soil and Water Management Plan.* prepared for Menangle Sand and Soil Pty Ltd.

EMM Consulting Pty Ltd (EMM) 2021b, *Menangle Quarry - Groundwater Model Report.* Technical report, Sydney: EMM Consulting Pty Ltd.

Geoscience Australia 2020, *Province and Sedimentary Basin Geology*. Accessed June 12, 2020. <u>http://www.ga.gov.au/scientific-topics/energy/province-sedimentary-basin-geology/petroleum/offshore-eastern-australia/sydney</u>

Standards Australia 1998, Water quality - Sampling, Part 11: Guidance on sampling of groundwaters. Sydney: Standards Australia.

WaterNSW 2020, "Real Time Data." www.WaterNSW.com.au. 15 01. https://realtimedata.waternsw.com.au/.

Appendix A

Groundwater quality results

				Location Code	вн	01_D	вн	01_S	BH	102	Bł	103	ВН	04	River	Site 1	River	r Site 3
				Date	2/06/2020	18/06/2021	29/05/2020	18/06/2021	29/05/2020	18/06/2021	2/06/2020	18/06/2021	29/05/2020	18/06/2021	29/05/2020	18/06/2021	29/05/2020	18/06/2021
				Lab Report Number	ES2019091	ES2123005	ES2018927	ES2123005	ES2018927	ES2123005	ES2019091	ES2123005	ES2018927	ES2123005	ES2018927	-	ES2018927	-
		Units	LOR	Water type (GW / SW)	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	sw	sw	sw	sw
	Temperature (Field)	(°C)	1		17.0	18.2	18.5	18.3	15.2	18.7	15.0	17.8	14.3	17.1	15.5	11.6	14.8	11.9
	Hardness as CaCO₃ (filtered)	mg/L	1		260	130	278	38	1,180	1,140	383	40	1,970	1,180	26	-	33	-
	Electrical Conductivity (Field)	(µs/cm)	-		2150.0	1217.0	1137.0	227.2	8732.0	7091.0	2101.0	314.1	10355.0	6864.0	195.2	165.8	264.9	160.5
	Electrical Conductivity (Lab)	μS/cm	1		2,730	1,310	1,370	218	9,840	8,230	2,640	141	12,000	8,460	228	-	308	-
Analytical results –	pH (Field)	-	-		6.90	6.62	6.72	5.23	8.38	5.80	7.32	5.73	8.43	6.52	7.25	8.01	7.22	6.36
general	pH (Lab)	-	0.01		6.85	7.35	6.45	6.03	8.04	6.61	7.65	5.90	8.11	7.42	7.79	-	7.88	-
	Dissolved oxygen (% saturation - Field)	mg/L	-		51.1	6.9	92.4	4.5	165.9	15.8	126.7	55.1	143.2	32.6	112.0	93.4	127.6	99.0
	Oxidation reduction potential (Field)	mg/L	-		153.1	-84.4	39.9	30.0	50.2	-78.0	135.7	30.4	94.5	-64.7	25.6	-37.7	74.8	23.6
	Total Dissolved Solids (Field)	mg/L	-		-	793.00	-	147.55	-	4608.50	-	204.10	-	4465.50	-	107.90	-	104.00
	Total Dissolved Solids (Calc.)	mg/L	1		1,770	852	890	142	6,400	5,350	1,720	92	7,800	5,500	148	-	200	-
	Alkalinity (Bicarbonate as CaCO₃)	mg/L	1		228	322	8	30	318	392	32	8	567	454	52	-	82	-
Analytical results –	Alkalinity (Carbonate as CaCO₃)	mg/L	1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	<1	-
alkalinity	Alkalinity (Hydroxide) as CaCO₃	mg/L	1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	<1	-
	Alkalinity (total) as CaCO₃	mg/L	1		228	322	8	30	318	392	32	8	567	454	52	-	82	-
	Calcium (filtered)	mg/L	1		43	34	42	7	142	151	20	11	172	110	4	-	5	-
	Chloride	mg/L	1		732	172	462	29	2,880	2,700	893	24	4,050	2,700	35	-	43	-
	Fluoride	mg/L	0.1		<0.1	0.4	<0.1	<0.1	0.8	0.6	0.1	<0.1	0.6	0.4	<0.1	-	<0.1	-
	Sodium (filtered)	mg/L	1		450	210	138	28	1,650	1,200	348	16	1,840	1,160	34	-	47	-
Inorganics	Magnesium (filtered)	mg/L	1		37	11	42	5	201	185	81	3	374	219	4	-	5	-
inorganics	Potassium (filtered)	mg/L	1		5	6	2	<1	15	12	3	2	31	32	3	-	4	-
	Anions Total	meq/L	0.01		29.7	13.8	13.4	2.04	104	92.1	26.8	1.19	138	91.5	2.15	-	3.08	-
	Ionic Balance	%	0.01		8.77	7.38	7.33	-	3.93	10.0	7.99	-	6.82	10.0	-	-	-	-
	Cations Total	meq/L	0.01		24.9	11.9	11.6	1.98	95.8	75.3	22.9	1.54	120	74.8	2.08	-	2.81	-
	Sulfate as SO ₄ - Turbidimetric (filtered)	mg/L	1		215	120	12	30	770	389	49	17	587	300	6	-	11	-
	Arsenic (filtered)	mg/L	0.001		<0.001	-	<0.001	-	0.001	-	<0.001	-	0.003	-	<0.001	-	<0.001	-
	Cadmium (filtered)	mg/L	0.0001		<0.0001	-	<0.0001	-	<0.0001	-	<0.0001	-	<0.0001	-	<0.0001	-	<0.0001	-
	Chromium (III+VI) (filtered)	mg/L	0.001		<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-
Metals	Copper (filtered)	mg/L	0.001		<0.001	-	<0.001	-	0.004	-	<0.001	-	0.006	-	0.017	-	<0.001	-
	Iron (filtered)	mg/L	0.05		<0.05	-	<0.05	-	<0.05	-	<0.05	-	<0.05	-	0.38	-	0.25	-
	Lead (filtered)	mg/L	0.001		<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-
	Nickel (filtered)	mg/L	0.001		0.006	-	0.003	-	0.020	-	0.013	-	0.023	-	0.006	-	0.003	-
	Zinc (filtered)	mg/L	0.005		0.116	-	0.074	-	0.041	-	0.017	-	0.109	-	0.033	-	<0.005	<u> </u>

Appendix B

Laboratory certificates of analysis

CERTIFICATE OF ANALYSIS

Work Order	ES2018927	Page	: 1 of 4	
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sy	ydney
Contact	: HENRY NOAKES	Contact	: Customer Services ES	
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: J190166 - Menangle Quarry	Date Samples Received	: 01-Jun-2020 19:00	
Order number	: J190166	Date Analysis Commenced	: 01-Jun-2020	
C-O-C number	:	Issue Date	: 03-Jun-2020 20:31	A NATA
Sampler	: KAITLYN BRODIE			Hac-MRA NATA
Site				
Quote number	:			Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Analytical Results

ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	Site_1_S	Site 2	Site 4	River_Site 1	River_Site 3
	Cl	lient samplii	ng date / time	29-May-2020 00:00	29-May-2020 00:00	29-May-2020 00:00	29-May-2020 00:00	29-May-2020 00:00
Compound	CAS Number	LOR	Unit	ES2018927-001	ES2018927-002	ES2018927-003	ES2018927-004	ES2018927-005
				Result	Result	Result	Result	Result
A005P: pH by PC Titrator								
pH Value		0.01	pH Unit	6.45	8.04	8.11	7.79	7.88
A010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1370	9840	12000	228	308
A016: Calculated TDS (from Electrica	al Conductivity)							
Total Dissolved Solids (Calc.)		1	mg/L	890	6400	7800	148	200
A065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L	278	1180	1970	26	33
D037P: Alkalinity by PC Titrator			0					
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	8	318	567	52	82
Total Alkalinity as CaCO3		1	mg/L	8	318	567	52	82
:D041G: Sulfate (Turbidimetric) as SC			3					
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	12	770	587	6	11
		•	ilig/E		110		•	••
D045G: Chloride by Discrete Analyse Chloride	16887-00-6	1	mg/L	462	2880	4050	35	43
	10007-00-0	•	ilig/E	402	2000	4030	55	+5
D093F: Dissolved Major Cations	7440 70 0	1	ma/l	42	142	172	4	5
Calcium	7440-70-2	1	mg/L	42	201	374	4 4	5
Magnesium Sodium	7439-95-4	1	mg/L mg/L	138	1650	1840	34	47
	7440-23-5	1	mg/L	2	15	31	34	47
Potassium	7440-09-7	I	IIIg/L	2	15	31	3	4
G020F: Dissolved Metals by ICP-MS		0.001		-0.001	0.001	0.000	-0.001	-0.001
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.001	0.003	<0.001	< 0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001 <0.001
Copper	7440-50-8	0.001	mg/L		0.004	0.006	0.017	
Nickel	7440-02-0	0.001	mg/L	0.003	0.020	0.023	0.006	0.003
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	< 0.001	<0.001	<0.001 <0.005
Zinc	7440-66-6	0.005	mg/L	0.074 <0.05	0.041 <0.05	0.109 <0.05	0.033	
Iron	7439-89-6	0.05	mg/L	SO.02	<u.u5< td=""><td>SU.UD</td><td>0.38</td><td>0.25</td></u.u5<>	SU.UD	0.38	0.25
K040P: Fluoride by PC Titrator		0.4		-0.4			-0.4	-0.1
Fluoride	16984-48-8	0.1	mg/L	<0.1	0.8	0.6	<0.1	<0.1

Page	: 4 of 4
Work Order	: ES2018927
Client	: EMM CONSULTING PTY LTD
Project	J190166 - Menangle Quarry

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	Site_1_S	Site 2	Site 4	River_Site 1	River_Site 3
	Cl	ient sampli	ng date / time	29-May-2020 00:00				
Compound	CAS Number	LOR	Unit	ES2018927-001	ES2018927-002	ES2018927-003	ES2018927-004	ES2018927-005
				Result	Result	Result	Result	Result
EN055: Ionic Balance - Continued								
ø Total Anions		0.01	meq/L	13.4	104	138	2.15	3.08
Ø Total Cations		0.01	meq/L	11.6	95.8	120	2.08	2.81
ø lonic Balance		0.01	%	7.33	3.93	6.82		

QUALITY CONTROL REPORT

Work Order	: ES2018927	Page	: 1 of 5
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: HENRY NOAKES	Contact	: Customer Services ES
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: J190166 - Menangle Quarry	Date Samples Received	: 01-Jun-2020
Order number	: J190166	Date Analysis Commenced	: 01-Jun-2020
C-O-C number	:	Issue Date	: 03-Jun-2020
Sampler	: KAITLYN BRODIE		HAC-MRA NATA
Site	:		
Quote number	:		Accreditation No. 825
No. of samples received	: 5		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA005P: pH by PC T	itrator (QC Lot: 30534	96)							
ES2018890-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.14	5.79	5.87	0% - 20%
ES2018927-004	River_Site 1	EA005-P: pH Value		0.01	pH Unit	7.79	7.66	1.68	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC I	_ot: 3053497)							
EW2002521-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	194	194	0.00	0% - 20%
ES2018890-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	272	280	3.14	0% - 20%
ED037P: Alkalinity b	by PC Titrator (QC Lot:	3053493)							
ES2018843-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	64	58	9.32	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	64	58	9.32	0% - 20%
ES2018883-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	87	84	3.36	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	87	84	3.36	0% - 20%
ED037P: Alkalinity b	by PC Titrator (QC Lot:	3053498)							
EW2002533-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1	<1	0.00	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	1	<1	0.00	No Limit
ES2018927-004	River_Site 1	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	52	53	0.00	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	52	53	0.00	0% - 20%

Page	: 3 of 5
Work Order	: ES2018927
Client	: EMM CONSULTING PTY LTD
Project	: J190166 - Menangle Quarry

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED041G: Sulfate (Tu	urbidimetric) as SO4 2-	by DA (QC Lot: 3053456) - continued							
ES2018927-001	Site_1_S	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	12	12	0.00	0% - 50%
ED045G: Chloride b	y Discrete Analyser (Q	C Lot: 3053457)							
ES2018927-001	Site_1_S	ED045G: Chloride	16887-00-6	1	mg/L	462	460	0.355	0% - 20%
ED093F: Dissolved I	Major Cations (QC Lot:	: 3053790)							
ES2018856-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	14	14	0.00	0% - 50%
		ED093F: Magnesium	7439-95-4	1	mg/L	22	22	0.00	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	138	141	1.92	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	36	36	0.00	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 3053788)							
ES2018927-005 River_Site 3	River_Site 3	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.25	0.25	0.00	No Limit
ES2018856-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.008	0.008	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.016	0.016	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.08	0.07	0.00	No Limit
K040P: Fluoride by	y PC Titrator (QC Lot: 3	3053490)							
ES2018620-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.00	No Limit
ES2018927-004	River Site 1	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 3053496)								
EA005-P: pH Value			pH Unit		4 pH Unit	101	98.0	102
					7 pH Unit	99.7	98.0	102
EA010P: Conductivity by PC Titrator (QCLot: 305	3497)							
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2100 µS/cm	108	95.0	113
ED037P: Alkalinity by PC Titrator (QCLot: 305349	3)							
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	99.5	81.0	111
			5		50 mg/L	113	70.0	130
ED037P: Alkalinity by PC Titrator (QCLot: 305349	8)							
ED037P: Arkannity by PC Titrator (QCL01. 305349 ED037-P: Total Alkalinity as CaCO3	o) 		mg/L		200 mg/L	101	81.0	111
			<u>9</u>		50 mg/L	108	70.0	130
	(OCL at: 2052456)				<u> </u>			
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	115	82.0	122
2004 rg. Suilate as 304 - Turbidimetric	14000-73-0	I	ilig/L	<1	500 mg/L	92.2	82.0	122
	0.50 (.57)				ooo mg/E	02.2	02.0	
ED045G: Chloride by Discrete Analyser (QCLot: 3	16887-00-6	1	ma/l	<1	10 mg/L	108	80.9	127
ED045G: Chloride	10007-00-0	I	mg/L	<1	1000 mg/L	108	80.9 80.9	127
					1000 mg/L	115	00.9	121
ED093F: Dissolved Major Cations (QCLot: 305379					50 #			
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	99.1	80.0	114
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	97.8	90.0	116
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	95.1	82.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	95.6	85.0	113
EG020F: Dissolved Metals by ICP-MS (QCLot: 305	53788)							
G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.8	85.0	114
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	92.6	84.0	110
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	91.5	85.0	111
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	90.8	81.0	111
G020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	92.4	83.0	111
G020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	89.8	82.0	112
G020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	93.7	81.0	117
G020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	101	82.0	112
EK040P: Fluoride by PC Titrator (QCLot: 3053490)							
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	105	82.0	116

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 3053456)						
ES2018927-001	Site_1_S	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	109	70.0	130
ED045G: Chloride	e by Discrete Analyser (QCLot: 3053457)						
ES2018927-001	Site_1_S	ED045G: Chloride	16887-00-6	250 mg/L	108	70.0	130
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 3053788)						
ES2018856-003	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	96.4	70.0	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	94.0	70.0	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	81.0	70.0	130
		EG020A-F: Copper	7440-50-8	1 mg/L	91.5	70.0	130
		EG020A-F: Lead	7439-92-1	1 mg/L	101	70.0	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	93.8	70.0	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	97.0	70.0	130
EK040P: Fluoride	by PC Titrator (QCLot: 3053490)						
ES2018620-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	105	70.0	130

QA/QC Compliance Assessment to assist with Quality Review						
Work Order	: ES2018927	Page	: 1 of 5			
Client		Laboratory	: Environmental Division Sydney			
Contact	: HENRY NOAKES	Telephone	: +61-2-8784 8555			
Project	: J190166 - Menangle Quarry	Date Samples Received	: 01-Jun-2020			
Site	:	Issue Date	: 03-Jun-2020			
Sampler	: KAITLYN BRODIE	No. of samples received	: 5			
Order number	: J190166	No. of samples analysed	: 5			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix.	W۵٦	FR

/ethod		E	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
				overdue			overdue	
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
Site_1_S,	Site 2,				01-Jun-2020	29-May-2020	3	
Site 4,	River_Site 1,							
River_Site 3								

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
Site_1_S,	Site 2,	29-May-2020				01-Jun-2020	29-May-2020	x
Site 4,	River_Site 1,							
River_Site 3								
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
Site_1_S,	Site 2,	29-May-2020				01-Jun-2020	26-Jun-2020	✓
Site 4,	River_Site 1,							
River_Site 3								
EA065: Total Hardness as CaCO3								
Clear Plastic Bottle - Natural (ED093F)								
Site_1_S		29-May-2020				02-Jun-2020	05-Jun-2020	✓
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F)								
Site 2,	Site 4,	29-May-2020				02-Jun-2020	26-Jun-2020	✓
River_Site 1,	River_Site 3							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
Site_1_S,	Site 2,	29-May-2020				01-Jun-2020	12-Jun-2020	✓
Site 4,	River_Site 1,							
River_Site 3								

Page	: 3 of 5
Work Order	: ES2018927
Client	: EMM CONSULTING PTY LTD
Project	: J190166 - Menangle Quarry

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	E>	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) Site_1_S, Site 4, River_Site 3	Site 2, River_Site 1,	29-May-2020				01-Jun-2020	26-Jun-2020	✓
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) Site_1_S, Site 4, River_Site 3	Site 2, River_Site 1,	29-May-2020				01-Jun-2020	26-Jun-2020	~
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F) Site_1_S		29-May-2020				02-Jun-2020	05-Jun-2020	~
Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) Site 2, River_Site 1,	Site 4, River_Site 3	29-May-2020				02-Jun-2020	26-Jun-2020	~
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Natural (EG020A-F) Site_1_S		29-May-2020				02-Jun-2020	25-Nov-2020	1
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) Site 2, River_Site 1,	Site 4, River_Site 3	29-May-2020				02-Jun-2020	25-Nov-2020	1
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P) Site_1_S, Site 4, River_Site 3	Site 2, River_Site 1,	29-May-2020				01-Jun-2020	26-Jun-2020	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		~	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	ງ ວດ	Regular	Actual	Expected	Evaluation	
	Wethod	UC	Redular	Actual	Expected	27010011011	
Laboratory Duplicates (DUP)	ED007 D	4	24	16.67	10.00		NEPM 2013 B3 & ALS QC Standard
	ED037-P	4	5			<u> </u>	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G		10	20.00	10.00	<u>∕</u>	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2		20.00	10.00	∕	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	15	13.33	10.00	∕	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	12	16.67	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	10	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
oH by PC Titrator	EA005-P	2	13	15.38	10.00	~	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	4	24	16.67	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	12	8.33	5.00	~	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
oH by PC Titrator	EA005-P	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	5	40.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride by Discrete Analyser	ED045G	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	10	10.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
luoride by PC Titrator	EK040P	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	10	10.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	5	20.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	5	20.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	15	6.67	5.00		NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	12	8.33	5.00		NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	5	20.00	5.00		NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Calculated TDS (from Electrical Conductivity)	EA016	WATER	In house: Calculation from Electrical Conductivity (APHA 2510 B) using a conversion factor specified in the analytical report. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2018927		
Client Contact Address	 EMM CONSULTING PTY LTD HENRY NOAKES Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065 	Laboratory Contact Address	 Environmental Division Sydney Customer Services ES 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: hnoakes@emmconsulting.com.au : :	E-mail Telephone Facsimile	: ALSEnviro.Sydney@ALSGlobal.com : +61-2-8784 8555 : +61-2-8784 8500
Project Order number C-O-C number Site Sampler	: J190166 - Menangle Quarry : J190166 : : : KAITLYN BRODIE	Page Quote number QC Level	: 1 of 2 : : NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Receive Client Requested Due Date		Issue Date Scheduled Reporting I	: 01-Jun-2020 Date : 04-Jun-2020
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	S : Undefined : 1 :	Security Seal Temperature No. of samples receive	: Not Available : 6.6' C - Ice Bricks present ed / analysed : 5 / 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample "Site 1_D" not received
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Dissolved Metals by ICP-MS - Suite	A : EG020A-F	
Site_1_S	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered

Metals by ICP/MS

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component EG020F

Matrix: WATER

component	uispiayeu in bia	ckets without a time	20F Ils by IC	12 r Suite	
Matrix: WATER			- EG020F ed Metals b	- NT- Wate	- W-01
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - Dissolved	WATER General	WATER 7 Metals
ES2018927-001	29-May-2020 00:00	Site_1_S	✓	✓	✓
ES2018927-002	29-May-2020 00:00	Site 2	✓	✓	✓
ES2018927-003	29-May-2020 00:00	Site 4	✓	✓	✓
ES2018927-004	29-May-2020 00:00	River_Site 1	✓	✓	1
ES2018927-005	29-May-2020 00:00	River_Site 3	✓	✓	✓

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Method Samples Received Instructions Received Due for Due for extraction Date analvsis Evaluation Evaluation Date Client Sample ID(s) Container EA005-P: pH by PC Titrator River Site 1 Clear Plastic Bottle - Natural 29-May-2020 01-Jun-2020 x River_Site 3 Clear Plastic Bottle - Natural 29-May-2020 01-Jun-2020 x Site 2 Clear Plastic Bottle - Natural 29-May-2020 01-Jun-2020 x Site 4 Clear Plastic Bottle - Natural 29-May-2020 01-Jun-2020 × Site_1_S Clear Plastic Bottle - Natural 29-May-2020 01-Jun-2020 •

Requested Deliverables

ALL INVOICES

- A4 - AU Tax Invoice (INV)	Email	finance@emmconsulting.com.au
HENRY NOAKES		
 *AU Certificate of Analysis - NATA (COA) 	Email	hnoakes@emmconsulting.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	hnoakes@emmconsulting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	hnoakes@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	hnoakes@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	hnoakes@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	hnoakes@emmconsulting.com.au
- EDI Format - XTab (XTAB)	Email	hnoakes@emmconsulting.com.au
Katharine Bond		
- A4 - AU Tax Invoice (INV)	Email	kbond@emmconsulting.com.au

Evaluation: \mathbf{x} = Holding time breach ; \mathbf{y} = Within holding time.

		· .			•										
Envi	ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	Ph: 08 8359 08 ERISBANE 3 Ph: 07 3243 72 UGLADSTONE	90 E: adel 2 Shand S 22 E: sanı 5 46 Callen	oad Pooraka SA 5095 ude@alagiobat.com leet Stafford OLD 4053 lea brisbane@alaglobal.com leonaal: Drive Cinton OLD 4680 leone@alaglobal.com	UMACKAY 78 Hi Ph: 07 4944 0177 DMELBOURNE Ph: 03 8549 960 UMUDGEE 27 S Ph: 02 6372 6735	7 E. mackay@a 2-4 Westall Ro: 0 E: somples.m ydney Road Ma	isglobal.com ad Springvale \ idbourne@alsg idgee NSW 288	/IC 3171 Jiobal.com 50	Ph: 02 UNOV Ph: 02 EIPER	VCASTLE 5/585 M 4014 2500 E: sen VRA 4/13 Geary P 4423 2063 E: now TH 10 Hod Way N 9209 7655 E: sen	nples.newcast lane North Nov ra@alsglobsl.r falaga_WA 60	wra NSW 2541 com	Ph: 02 8 DTOWNS Ph: 07 47 DWOLL	EY 277-289 Woodpark Road Smithfield NSW 2164 784 8655 E. samples sydney@elsglobal.com SVILE 14-15 Desma Court Bohle OLD 4818 96 0000 E: townaville.arxi.onnentet/8jslsglobal.com ONCONG 99 Kenny Street Wollongong NSW 2500 226 3125 E: portkembla@alegiobal.com
CLIENT:	EMM Consulting Pty L			TURN	AROUND REQUIREMENTS :	Standa	ard TAT (List	due date):					Forth	BURATORY US	⊇⊙NLY (Gridle)
OFFICE:	Sydney				d TAT may be longer for some tests e.g. ce Organics)	Non S	tandard or u	rgent TAT (1	.ist due dat	e): 2 day turn	aroud		Custody	Seal intact?	Yes No NA
PROJECT	: J190166 - Menangle Q	luarry			UOTE NO.:				4	COC SEQU	ENCE NUMBER	R (Circle)	Preierice receipt?	hozec ice make or	esent upon rest in yo Mit
ORDER N	UMBER: J190166								cod	: <u>1</u> 2	34	56	7 Zadon	Samule Tempering	Sea new loka a sea sea sea sea sea sea sea sea sea
PROJECT	MANAGER: Katharine	Bond / Henry Noakes	CONTACT P	H: 0439	604 035 / 0448 772 835				OF	<u>1</u> 2	3 4	56	7 Othe co		
SAMPLER	t: Kailtyn Brodie		SAMPLER M	OBILE:	0401 881 447	RELINQUIS	SHED BY:		RE	CEIVED BY:	ar t	~	RELINQUISH	ED BY:	RECEIVED BY:
COC emai	iled to ALS? (<u>YES</u> / I	NO)	EDD FORMA	T (or de	fault):					Sch	ES .				
		I if no other addresses are				DATE/TIME	:		DA	TEATIME:	100	` ~	DATE/TIME:		DATE/TIME:
Email Invo	pice to (will default to PM	if no other addresses are	listed): kbond@emm	consut	ing.com.au	<u> </u>			1	19120	190	RO _			
COMMEN	TS/SPECIAL HANDLING	SISTORAGE OR DISPOS	AL:					•	;						
		SAME BORNES	109 11 19 19 19 19 19 19 19 19 19 19 19 19			RMATION						l bottle requi		attract suite price) d (field filtered bottle	Additional Information
LAB ID	SAMPL	EID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	General water suite NT-12	Dissolved Metals Suite W-1 [*] * PLUS IRON (Fe)						Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
1	Site 1_S		29/05/2020	w	2 x P	·	2	x	x						Please lab filter from unpreserved bottle for metals.
SKA2	Site 1_D		29/05/2020	w	1×P&1×N		2	x	x						
2	Site 2		29/05/2020	w	1 x P & 1 x N		2	x	x						
3	Site 4		29/05/2020	w	1xP&1xN		2	x	x .						onmental Division
4	River_Site 1		29/05/2020	w	1xP&1xN		2	×	x						rk Order Fleference
5	River_Site 3		29/05/2020	w	1×P&1×N		2	x	x					_ E	S2018927
			<u></u>											Telephor	ne : + 61-2-87(¥4 € 555
			-									A			-
						TOTAL	12	6	6			•			
V = VOA Via	al HCI Preserved; VB = VOA	Vial Sodium Bisulphate Prese	rved; VS = VOA Vial Sul	furic Pres	ed ORC; SH = Sodium Hydroxide/Cd Pr erved; AV = Airfreight Unpreserved Vial for Acid Sulphate Soils; B = Unpreserve	SG = Sulfuric F									lastic; F = Formaldehyde Preserved Glass;

.

CERTIFICATE OF ANALYSIS

Work Order	ES2019091	Page	: 1 of 4	
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division S	Sydney
Contact	: HENRY NOAKES	Contact	: Customer Services ES	
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road	d Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: J190166 - Menangle Quarry	Date Samples Received	: 02-Jun-2020 19:00	and the second s
Order number	: J190166	Date Analysis Commenced	: 02-Jun-2020	
C-O-C number	:	Issue Date	: 04-Jun-2020 11:47	A NATA
Sampler	: KAITLYN BRODIE			Hac-MRA NATA
Site	:			
Quote number	: EN/112/18 - Primary work only			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 2			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

 \sim = Indicates an estimated value.

- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Analytical Results

ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	Site 3	Site 1_D	 	
	Cl	ient samplii	ng date / time	02-Jun-2020 00:00	02-Jun-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2019091-001	ES2019091-002	 	
				Result	Result	 	
A005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.65	6.85	 	
A010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	µS/cm	2640	2730	 	
EA016: Calculated TDS (from Electrica	al Conductivity)						
Total Dissolved Solids (Calc.)		1	mg/L	1720	1770	 	
A065: Total Hardness as CaCO3							1
Total Hardness as CaCO3		1	mg/L	383	260	 	
		•			200		1
ED037P: Alkalinity by PC Titrator Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3		1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	3812-32-6	1	-	32	228	 	
-	71-52-3	1	mg/L		228		
Total Alkalinity as CaCO3		I	mg/L	32	228	 	
D041G: Sulfate (Turbidimetric) as SC							1
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	49	215	 	
ED045G: Chloride by Discrete Analyse	er						
Chloride	16887-00-6	1	mg/L	893	732	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	20	43	 	
Magnesium	7439-95-4	1	mg/L	81	37	 	
Sodium	7440-23-5	1	mg/L	348	450	 	
Potassium	7440-09-7	1	mg/L	3	5	 	
G020F: Dissolved Metals by ICP-MS							
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium	7440-47-3		mg/L	<0.001	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	0.013	0.006	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.017	0.116	 	
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	 	
	1400 00-0						1
K040P: Fluoride by PC Titrator	16094 49 9	0.1	mg/L	0.1	<0.1		
Fluonde	16984-48-8	0.1	iiig/L	0.1	<u>~v.1</u>	 	

Page	: 4 of 4
Work Order	: ES2019091
Client	: EMM CONSULTING PTY LTD
Project	J190166 - Menangle Quarry

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	Site 3	Site 1_D	 	
	Cl	ient sampli	ng date / time	02-Jun-2020 00:00	02-Jun-2020 00:00	 	
Compound	CAS Number	LOR	Unit	ES2019091-001	ES2019091-002	 	
				Result	Result	 	
EN055: Ionic Balance - Continued							
ø Total Anions		0.01	meq/L	26.8	29.7	 	
Ø Total Cations		0.01	meq/L	22.9	24.9	 	
ø Ionic Balance		0.01	%	7.99	8.77	 	

QUALITY CONTROL REPORT

Work Order	: ES2019091	Page	: 1 of 5	
Client		Laboratory	: Environmental Division Syd	Iney
Contact	: HENRY NOAKES	Contact	: Customer Services ES	-
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road S	mithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: J190166 - Menangle Quarry	Date Samples Received	: 02-Jun-2020	
Order number	: J190166	Date Analysis Commenced	: 02-Jun-2020	Multi Maria
C-O-C number	:	Issue Date	: 04-Jun-2020	
Sampler	: KAITLYN BRODIE			Hac-MRA NATA
Site	:			
Quote number	: EN/112/18 - Primary work only			Accreditation No. 825
No. of samples received	: 2			Accredited for compliance with
No. of samples analysed	: 2			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA005P: pH by PC 1	Titrator (QC Lot: 30561)	22)							
ES2019014-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.49	7.49	0.00	0% - 20%
ES2019017-004	Anonymous	EA005-P: pH Value		0.01	pH Unit	11.4	11.4	0.0875	0% - 20%
EA010P: Conductiv	ity by PC Titrator (QC L	₋ot: 3056119)							
ES2018934-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	3.36 mS/cm	3340	0.664	0% - 20%
ES2019017-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	2230	2230	0.00	0% - 20%
ED037P: Alkalinity b	by PC Titrator (QC Lot:	3056121)							
ES2018934-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	848	931	9.24	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	848	931	9.24	0% - 20%
ES2019017-004	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	265	257	3.02	0% - 20%
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	186	169	9.64	0% - 20%
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.00	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	452	426	5.70	0% - 20%
ED041G: Sulfate (Τι	urbidimetric) as SO4 2-	by DA (QC Lot: 3056140)							
ES2019075-008	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	7	7	0.00	No Limit
ES2018934-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	202	201	0.00	0% - 20%
ED045G: Chloride b	y Discrete Analyser (Q	C Lot: 3056137)							
ES2019072-003	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	14	14	0.00	0% - 50%
ES2018934-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	548	549	0.233	0% - 20%
ED045G: Chloride b	y Discrete Analyser (Q	C Lot: 3056143)							
ES2019091-002	Site 1_D	ED045G: Chloride	16887-00-6	1	mg/L	732	736	0.524	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot:	: 3055986)							
ES2019091-001	Site 3	ED093F: Calcium	7440-70-2	1	mg/L	20	20	0.00	0% - 20%

Page	: 3 of 5
Work Order	: ES2019091
Client	: EMM CONSULTING PTY LTD
Project	: J190166 - Menangle Quarry

Sub-Matrix: WATER						Laboratory D	ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
ED093F: Dissolved	Major Cations (QC Lot: 305								
ES2019091-001	Site 3	ED093F: Magnesium	7439-95-4	1	mg/L	81	82	1.50	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	348	355	1.89	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.00	No Limit
EG020F: Dissolved	Metals by ICP-MS (QC Lot:	3055987)							
ES2019091-001	Site 3	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.013	0.013	0.00	0% - 50%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.017	0.016	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit
EK040P: Fluoride by	y PC Titrator (QC Lot: 3056 [,]	20)							
ES2018934-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.6	0.6	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 3056122)								
EA005-P: pH Value			pH Unit		4 pH Unit	101	98.0	102
					7 pH Unit	99.7	98.0	102
EA010P: Conductivity by PC Titrator (QCLot: 305	6119)							
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2100 µS/cm	106	95.0	113
ED037P: Alkalinity by PC Titrator (QCLot: 305612	1)							1
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	93.0	81.0	111
			g		50 mg/L	105	70.0	130
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	(OCL at: 2056140)							1
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	106	82.0	122
			<u>9</u> . –	<1	500 mg/L	103	82.0	122
ED0450: Chlorida hy Diserta Analyzar (OCL et 2	050427)				J			1
ED045G: Chloride by Discrete Analyser (QCLot: 3 ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	106	80.9	127
ED045G. Chionde	10007-00-0	I	ilig/L	<1	1000 mg/L	112	80.9	127
	0.504.40)				1000 mg/L	1.12	00.0	
ED045G: Chloride by Discrete Analyser (QCLot: 3	16887-00-6	1	ma/l	<1	10 mg/L	107	80.9	127
ED045G: Chloride	10007-00-0	I	mg/L	<1	1000 mg/L	107	80.9 80.9	127
					1000 mg/L	117	00.9	127
ED093F: Dissolved Major Cations (QCLot: 305598					50 #	100		
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	102	80.0	114
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	99.2	90.0	116
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	98.0	82.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	98.9	85.0	113
EG020F: Dissolved Metals by ICP-MS(QCLot: 305	55987)							
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	94.9	85.0	114
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	98.1	84.0	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.7	85.0	111
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.8	81.0	111
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.2	83.0	111
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	90.8	82.0	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	93.4	81.0	117
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	102	82.0	112
EK040P: Fluoride by PC Titrator(QCLot: 3056120))							
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	98.4	82.0	116

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(QCLot: 3056	j140)								
ES2018934-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not Determined	70.0	130			
ED045G: Chloride	by Discrete Analyser (QCLot: 3056137)									
ES2018934-001	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	102	70.0	130			
ED045G: Chloride	by Discrete Analyser (QCLot: 3056143)									
ES2019091-002	Site 1_D	ED045G: Chloride	16887-00-6	250 mg/L	95.9	70.0	130			
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 3055987)									
ES2019091-002	Site 1_D	EG020A-F: Arsenic	7440-38-2	1 mg/L	95.1	70.0	130			
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	98.3	70.0	130			
		EG020A-F: Chromium	7440-47-3	1 mg/L	97.2	70.0	130			
		EG020A-F: Copper	7440-50-8	1 mg/L	93.5	70.0	130			
		EG020A-F: Lead	7439-92-1	1 mg/L	105	70.0	130			
		EG020A-F: Nickel	7440-02-0	1 mg/L	93.6	70.0	130			
		EG020A-F: Zinc	7440-66-6	1 mg/L	102	70.0	130			
EK040P: Fluoride	by PC Titrator (QCLot: 3056120)									
ES2018934-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	120	70.0	130			

Work Order	: ES2019091	Page	: 1 of 5
		, ago	. 1015
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: HENRY NOAKES	Telephone	: +61-2-8784 8555
Project	: J190166 - Menangle Quarry	Date Samples Received	: 02-Jun-2020
Site	:	Issue Date	: 04-Jun-2020
Sampler	: KAITLYN BRODIE	No. of samples received	: 2
Order number	: J190166	No. of samples analysed	: 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Matrix: WATED

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	ES2018934001	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: x = Holding time breach ; v = Within holding time	Evaluation:	× = Holding	time breach	· 🗸 =	Within	holding time
---	-------------	-------------	-------------	-------	--------	--------------

Matrix: WATER					Evaluation	h: 🗴 = Holding time	e breach ; 🗸 = With	n holding tim
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P) Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	02-Jun-2020	~
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P) Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	30-Jun-2020	~
EA065: Total Hardness as CaCO3								
Clear Plastic Bottle - Natural (ED093F) Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	09-Jun-2020	✓
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	16-Jun-2020	-
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	30-Jun-2020	~
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	30-Jun-2020	~
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F) Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	09-Jun-2020	✓

Page	: 3 of 5
Work Order	: ES2019091
Client	: EMM CONSULTING PTY LTD
Project	: J190166 - Menangle Quarry

Matrix: WATER					Evaluation	n: × = Holding time	e breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Natural (EG020A-F)								
Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	29-Nov-2020	 ✓
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P)								
Site 3,	Site 1_D	02-Jun-2020				02-Jun-2020	30-Jun-2020	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specificat
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analvtical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
luoride by PC Titrator	EK040P	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
H by PC Titrator	EA005-P	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
Ikalinity by PC Titrator	ED037-P	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
hloride by Discrete Analyser	ED045G	4	21	19.05	10.00	✓	NEPM 2013 B3 & ALS QC Standard
onductivity by PC Titrator	EA010-P	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
luoride by PC Titrator	EK040P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
H by PC Titrator	EA005-P	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
lethod Blanks (MB)							
Chloride by Discrete Analyser	ED045G	2	21	9.52	5.00	1	NEPM 2013 B3 & ALS QC Standard
onductivity by PC Titrator	EA010-P	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
issolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
luoride by PC Titrator	EK040P	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
lajor Cations - Dissolved	ED093F	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
latrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	2	21	9.52	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.00	5.00		NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	7	14.29	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
	223110						

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Calculated TDS (from Electrical Conductivity)	EA016	WATER	In house: Calculation from Electrical Conductivity (APHA 2510 B) using a conversion factor specified in the analytical report. This method is compliant with NEPM (2013) Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (2013) Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (2013) Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM (2013) Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM (2013) Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM (2013) Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2019091		
Client Contact Address	 EMM CONSULTING PTY LTD HENRY NOAKES Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065 	Laboratory Contact Address	 Environmental Division Sydney Customer Services ES 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail Telephone Facsimile	: hnoakes@emmconsulting.com.au : :	E-mail Telephone Facsimile	: ALSEnviro.Sydney@ALSGlobal.com : +61-2-8784 8555 : +61-2-8784 8500
Project Order number C-O-C number Site Sampler	: J190166 - Menangle Quarry : J190166 : : : KAITLYN BRODIE	Page Quote number QC Level	: 1 of 2 : : NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Receiv Client Requested Due Date		Issue Date Scheduled Reporting I	: 02-Jun-2020 Date : 04-Jun-2020
Delivery Detail Mode of Delivery No. of coolers/boxes Receipt Detail	/S : Undefined : 1 :	Security Seal Temperature No. of samples receive	: Not Available : 10.1' C - Ice Bricks present ed / analysed : 2 / 2

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Dissolved Metals by ICP-MS - S	Suite A : EG020A-F	
Site 3	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered
Site 1_D	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered

Aetals by ICP/MS

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component EG020F

Matrix: WATER

component		and a without a	unic	0F Is by I	2 Suite	
Matrix: WATER				R - EG020 ed Metals	- NT-1 Water	R - W-01 Is
Laboratory samp	le Client sampling	Client sample I)	ATER issolve	ATER	le ta
ID	date / time			Dis X	l≩ 9	N N
ES2019091-001	02-Jun-2020 00:00	Site 3		1	1	1
ES2019091-002	02-Jun-2020 00:00	Site 1_D		1	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	finance@emmconsulting.com.au
HENRY NOAKES		
 *AU Certificate of Analysis - NATA (COA) 	Email	hnoakes@emmconsulting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	hnoakes@emmconsulting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	hnoakes@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	hnoakes@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	hnoakes@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	hnoakes@emmconsulting.com.au
- EDI Format - XTab (XTAB)	Email	hnoakes@emmconsulting.com.au
Katharine Bond		
- A4 - AU Tax Invoice (INV)	Email	kbond@emmconsulting.com.au

		• •										4/0	6/25	2		
Enu	ALS	CHAIN OF CUSTODY ALS Laboratory: please tick →	- Ph, 08 8359 08 □BRISBANE 3 Ph: 97 3243 72 □GLADSTONE	90 E: adelaide 2 Shand Stree 22 E: samples : 46 Callemon	l Pourska SA 5095 a@alsglobai.co.** et Skiflord QLD 4053 s.brisbene @alsglobal.com etab.Drive Cifrino QLD 4660 ne@alsglobal.com	DMACKAY 78 Harbour Road Mackay OLD 4740 Ph. 07 4944 0177 E: mackay@alsglobal.com DMELBOURNE 2-4 Westall Road Springvale VIC 3171 Ph. 03 8549 9600 E: samples.meibourne@alsglobal.com DMUDGEE 27 Sydney Road Mudges NSW 2850 Ph. 02 0372 6735 E: mudges mal@alsglobal.com		□NEWCASTLE 5/565 Martionol Rd Mayfield West NSW 2304 Ph: 02 4014 2500 E. samples newcastle@alegiobal.com UNCWRA 4/13 Geory Piace North Nowra NSW 2541 Ph: 024423 2003 E. nowra@alegiobal.com DPERTH 10 Hod Way Maloge WA 6590 Ph: 098 3209 7655 E. samples.peth@alegiobal.com			com	USYDNEY 277-289 Woodpark Road Smithfield NSW 2164 Ph: 02 8784 8555 E: samples sydney@acglobal.com UTOWNSV:LE 14-15 Desma Court Bohre OLD 4318 Ph. 07 4790 6600 E: townsville onvronmental@elsglobal.com EWOLLONGONS 99 Kenny Street Wollongong NSW 2500 Ph: 02 4225 5125 E: portkembla@isglobal.com				
LIENT:	EMM Consulting Pty Lt	· · · · · · · · · · · · · · · · · · ·		TURNAR	OUND REQUIREMENTS :	Stanc	ard TAT (Lis	t due date):		······			FO	RLABORA	ORY USE	ONLY (Circle)
FICE:	Sydney			(Standard T Ultra Trace	FAT may be longer for some tests (ist due date): Due by CO	B 3/6/2020		CU	tody Seal Inta	st2	Yes No
OJECT	: J190166 - Menangle Qu	uarry		ALS QUO					4			BR (Circle)	Fre	e ice / frozep/	e oncks gre	sentupon (Tes) No
DER N	UMBER: J190166								coc:	<u>1</u> 2	34	56	7 Ray	idom Sample	emperature	on Receipt:
OJECT	MANAGER: Katharine E	Bond / Henry Noakes	CONTACT PI	H: 0439 60	4 035 / 0448 772 835				OF:	<u>1</u> 2	34	56	7 On	ar comment		\mathcal{C}
IPLEF	: Kailtyn Brodie		SAMPLER M	OBILE: 04	01 881 447	RELINQU	ISHED BY:		REC	EIVED BY:			RELINQ	JISHED BY:		RECEIVED BY:
c ema	iled to ALS? (<u>YES</u> / N	0)	EDD FORMA	T (or defa	ult):					The	00.5	>.				
	ports to (will default to PM					DATE/TIM	E:	:			s	900	DATE/TI	ME:		DATE/TIME:
MMEN	TS/SPECIAL HANDLING	STORAGE OR DISPO	OSAL:					•	#	10176	- +					
LS ISE	W	SAMPLE DETA ATRIX: SOUD (S) W/			CONTAINER IN	FORMATION				ED including uired, specify 1	Total (unfilte					Additional Information
AB ID	SAMPLE	EID	DATE / TIME	MATRIX	TYPE & PRESERVA (refer to codes belo		TOTAL CONTAINERS	General water suite NT-12	Dissolved Metals Suite W-1 PLUS IRON (Fe)							Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
١	Site 3		2/06/2020	w	1 x P & 1 x N		2	x	x				-			
2	Site 1_D		2/06/2020	v	1 x P & 1 x N		2	x	x							This site appeared on COC sent on 01/06/2020 accidentally.
			-												¢	
		9-100 ¥		10-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	e energenenenenenenenenenenenenenenenenene							Sydney Work	/ Order R	Il Divisio eference 909		
		and the second s		-												
			·								<u> </u>	Telephone :	+ 61-2-878	4 8555	111	
			<u></u>								<u> </u>					!
											· · ·					· · · · · · · · · · · · · · · · · · ·

CERTIFICATE OF ANALYSIS

Work Order	ES2123005	Page	: 1 of 3
Amendment	:1		
Client	: EMM CONSULTING PTY LTD	Laboratory	Environmental Division Sydney
Contact	: HENRY NOAKES	Contact	: Sepan Mahamad
Address	Ground Floor Suite 1 20 Chandos Street	Address	277-289 Woodpark Road Smithfield NSW Australia 2164
	St Leonards NSW NSW 2065		
Telephone	:	Telephone	: +61 2 8784 8555
Project	: J190166 - Menangle Quarry	Date Samples Received	: 21-Jun-2021 18:45
Order number	: J190166	Date Analysis Commenced	: 21-Jun-2021
C-O-C number	:	Issue Date	: 01-Jul-2021 18:24
Sampler	: STEVE ROCKS		Iac-MRA NATA
Site	:		
Quote number	: EN/112/20 Primary work		Accreditation No. 825
No. of samples received	: 5		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Amendment (01/07/2021): This report has been amended and re-released to allow a change in sampling date to 18/06/2021 for samples 001-005. All analysis results are as per the previous report.
- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BH01_D	BH01_S	BH02	BH03	BH04
		Sampli	ng date / time	18-Jun-2021 11:30	18-Jun-2021 12:15	18-Jun-2021 13:30	18-Jun-2021 15:00	18-Jun-2021 15:30
Compound	CAS Number	LOR	Unit	ES2123005-001	ES2123005-002	ES2123005-003	ES2123005-004	ES2123005-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.35	6.03	6.61	5.90	7.42
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	1310	218	8230	141	8460
EA016: Calculated TDS (from Electric	al Conductivity)							
Total Dissolved Solids (Calc.)		1	mg/L	852	142	5350	92	5500
EA065: Total Hardness as CaCO3								
Total Hardness as CaCO3		1	mg/L	130	38	1140	40	1180
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	322	30	392	8	454
Total Alkalinity as CaCO3		1	mg/L	322	30	392	8	454
ED041G: Sulfate (Turbidimetric) as S	O4 2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	120	30	389	17	300
ED045G: Chloride by Discrete Analys	er							
Chloride	16887-00-6	1	mg/L	172	29	2700	24	2700
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	34	7	151	11	110
Magnesium	7439-95-4	1	mg/L	11	5	185	3	219
Sodium	7440-23-5	1	mg/L	210	28	1200	16	1160
Potassium	7440-09-7	1	mg/L	6	<1	12	2	32
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	0.4	<0.1	0.6	<0.1	0.4
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	13.8	2.04	92.1	1.19	91.5
Ø Total Cations		0.01	meq/L	11.9	1.98	75.3	1.54	74.8
ø lonic Balance		0.01	%	7.38		10.0		10.0

QUALITY CONTROL REPORT

Work Order	: ES2123005	Page	: 1 of 5
Amendment	: 1		
Client	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: HENRY NOAKES	Contact	: Sepan Mahamad
Address	Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61 2 8784 8555
Project	: J190166 - Menangle Quarry	Date Samples Received	: 21-Jun-2021
Order number	: J190166	Date Analysis Commenced	: 21-Jun-2021
C-O-C number	:	Issue Date	: 01-Jul-2021
Sampler	: STEVE ROCKS		AC-MRA NATA
Site	:		
Quote number	: EN/112/20 Primary work		Accreditation No. 825
No. of samples received	: 5		Accredited for compliance with
No. of samples analysed	: 5		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC 1	Titrator (QC Lot: 3748449)							
ES2122916-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.71	6.67	0.6	0% - 20%
ES2122988-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.84	7.85	0.1	0% - 20%
EA010P: Conductivi	ity by PC Titrator (QC Lo	t: 3748448)							
ES2123005-003	BH02	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	8230	8310	0.9	0% - 20%
ES2122916-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1250	1250	0.0	0% - 20%
ES2123022-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1020	1020	0.2	0% - 20%
ES2122988-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	46500	46800	0.7	0% - 20%
ED037P: Alkalinity b	by PC Titrator (QC Lot: 3	748450)							
ES2122916-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	25	24	4.3	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	25	24	4.3	0% - 20%
ES2122988-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	115	118	1.8	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	115	118	1.8	0% - 20%
ED041G: Sulfate (Τι	ırbidimetric) as SO4 2- by	DA (QC Lot: 3749782)							
ES2123005-001	BH01_D	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	120	119	1.5	0% - 20%
EW2102711-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	8	8	0.0	No Limit
ED045G: Chloride b	y Discrete Analyser (QC	Lot: 3749783)							
ES2123005-001	BH01_D	ED045G: Chloride	16887-00-6	1	mg/L	172	173	0.6	0% - 20%
EW2102711-004	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	39	39	0.0	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot: 3	754213)							
ES2122543-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	79	75	5.6	0% - 20%

Page	: 3 of 5
Work Order	ES2123005 Amendment 1
Client	: EMM CONSULTING PTY LTD
Project	: J190166 - Menangle Quarry

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED093F: Dissolved	Major Cations (QC I	Lot: 3754213) - continued							
ES2122543-001	Anonymous	ED093F: Magnesium	7439-95-4	1	mg/L	29	31	6.5	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	5	5	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
ES2122976-007	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	4	4	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	3	2	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	18	18	0.0	0% - 50%
		ED093F: Potassium	7440-09-7	1	mg/L	5	2	81.9	No Limit
EK040P: Fluoride by	y PC Titrator (QC Lo	ot: 3748451)							
ES2123005-003	BH02	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.6	0.5	0.0	No Limit
ES2122988-002	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.1	1.1	0.0	0% - 50%

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (S		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 3748449)									
EA005-P: pH Value			pH Unit		4 pH Unit	99.0	98.8	101	
					7 pH Unit	100	99.2	101	
EA010P: Conductivity by PC Titrator (QCLot: 3748	448)								
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	220 µS/cm	99.6	91.1	107	
				<1	2100 µS/cm	98.7	93.2	108	
ED037P: Alkalinity by PC Titrator (QCLot: 3748450)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	99.2	81.0	111	
					50 mg/L	103	80.0	120	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	QCLot: 3749782)								
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	103	82.0	122	
				<1	500 mg/L	103	82.0	122	
ED045G: Chloride by Discrete Analyser (QCLot: 37	(49783)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	106	80.9	127	
				<1	1000 mg/L	103	80.9	127	
ED093F: Dissolved Major Cations (QCLot: 3754213	3)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	106	80.0	114	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	99.1	90.0	116	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	106	82.0	120	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	93.9	85.0	113	
EK040P: Fluoride by PC Titrator (QCLot: 3748451)									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	88.4	82.0	116	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA(QCLot: 37497	82)					
ES2123005-001	BH01_D	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	10 mg/L	# Not	70.0	130
					Determined		
ED045G: Chloride	by Discrete Analyser (QCLot: 3749783)						

Page	5 of 5
Work Order	: ES2123005 Amendment 1
Client	: EMM CONSULTING PTY LTD
Project	: J190166 - Menangle Quarry

Sub-Matrix: WATER	ub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
ED045G: Chloride	by Discrete Analyser (QCLot: 3749783) - continued								
ES2123005-001	BH01_D	ED045G: Chloride	16887-00-6	50 mg/L	109	70.0	130		
EK040P: Fluoride	by PC Titrator (QCLot: 3748451)								
ES2122972-001	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	90.6	70.0	130		

	QA/QC Compliance	Assessment to assist with	h Quality Review
Nork Order	ES2123005	Page	: 1 of 5
Mendment	: 1		
ent	EMM CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
ct	: HENRY NOAKES	Telephone	: +61 2 8784 8555
	: J190166 - Menangle Quarry	Date Samples Received	: 21-Jun-2021
	:	Issue Date	: 01-Jul-2021
bler	: STEVE ROCKS	No. of samples received	: 5
r number	: J190166	No. of samples analysed	: 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	ES2123005001	BH01_D	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: WATER							
Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
BH01_D,	BH01_S,				21-Jun-2021	18-Jun-2021	3
BH02,	BH03,						
BH04							

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	i: × = Holding time	breach ; ✓ = With	in holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
BH01_D,	BH01_S,	18-Jun-2021				21-Jun-2021	18-Jun-2021	*
BH02,	BH03,							
BH04								
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
BH01_D,	BH01_S,	18-Jun-2021				21-Jun-2021	16-Jul-2021	 ✓
BH02,	BH03,							
BH04								

Page	: 3 of 5
Work Order	ES2123005 Amendment 1
Client	: EMM CONSULTING PTY LTD
Project	: J190166 - Menangle Quarry

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA065: Total Hardness as CaCO3								
Clear Plastic Bottle - Natural (ED093F) BH01_D, BH02, BH04	BH01_S, BH03,	18-Jun-2021				24-Jun-2021	25-Jun-2021	1
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P) BH01_D, BH02, BH04	BH01_S, BH03,	18-Jun-2021				21-Jun-2021	02-Jul-2021	1
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G) BH01_D, BH02, BH04	BH01_S, BH03,	18-Jun-2021				22-Jun-2021	16-Jul-2021	✓
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G) BH01_D, BH02, BH04	BH01_S, BH03,	18-Jun-2021				22-Jun-2021	16-Jul-2021	✓
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F) BH01_D, BH02, BH04	BH01_S, BH03,	18-Jun-2021				24-Jun-2021	25-Jun-2021	~
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural (EK040P) BH01_D, BH02, BH04	ВН01_S, ВН03,	18-Jun-2021				21-Jun-2021	16-Jul-2021	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; 🖌 = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	3	36	8.33	8.33	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by PC Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	36	2.78	1.67	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fluoride by PC Titrator	EK040P	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Calculated TDS (from Electrical Conductivity)	EA016	WATER	In house: Calculation from Electrical Conductivity (APHA 2510 B) using a conversion factor specified in the analytical report. This method is compliant with NEPM Schedule B(3)
Alkalinity by PC Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G. The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA seal method 2 017-1-L
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
lonic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order Amendment	: ES2123005 : 1		
Client Contact Address	 EMM CONSULTING PTY LTD HENRY NOAKES Ground Floor Suite 1 20 Chandos Street St Leonards NSW NSW 2065 	Contact : S Address : 2	nvironmental Division Sydney epan Mahamad 77-289 Woodpark Road Smithfield ISW Australia 2164
E-mail Telephone Facsimile	: hnoakes@emmconsulting.com.au : :	Telephone : +	epan.Mahamad@ALSGlobal.com 61
Project Order number	: J190166 - Menangle Quarry : J190166	Quote number : E	of 2 S2020EMGAMM0004 (EN/112/20 rimary work)
C-O-C number	:	QC Level : N	EPM 2013 B3 & ALS QC Standard
Site Sampler	: : STEVE ROCKS		
Dates			
Date Samples Receive Client Requested Due Date	d : 21-Jun-2021 18:45 : 29-Jun-2021	Issue Date Scheduled Reporting Date	: 01-Jul-2021 : 29-Jun-2021
Delivery Details Mode of Delivery No. of coolers/boxes Receipt Detail	: Client Drop Off : 1 : large esky	Security Seal Temperature No. of samples received / a	: Intact. : 6.2'C - Ice Bricks present analysed : 5 / 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- (01/07/2021) This is an updated SRN which reflects a change in sampling date to 18/06/2021 for samples 001-005.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

component		ckets without	a une	2 Suite
Matrix: WATER				- NT-1: Water
Laboratory sample ID	Sampling date / time	Sample ID		WATER - General \
ES2123005-001	18-Jun-2021 11:30	BH01_D		✓
ES2123005-002	18-Jun-2021 12:15	BH01_S		✓
ES2123005-003	18-Jun-2021 13:30	BH02		✓
ES2123005-004	18-Jun-2021 15:00	BH03		1
ES2123005-005	18-Jun-2021 15:30	BH04		✓

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER				Evaluation: × = Ho	olding time bre	each ; 🗸 = With	in holding time.	
Method		Due for	Due for	Samples R	Samples Received		Instructions Received	
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation	
EA005-P: pH by PC	Titrator							
BH01_D	Clear Plastic Bottle - Natural		18-Jun-2021	21-Jun-2021	*			
BH01_S	Clear Plastic Bottle - Natural		18-Jun-2021	21-Jun-2021	×			
BH02	Clear Plastic Bottle - Natural		18-Jun-2021	21-Jun-2021	×			
BH03	Clear Plastic Bottle - Natural		18-Jun-2021	21-Jun-2021	×			
BH04	Clear Plastic Bottle - Natural		18-Jun-2021	21-Jun-2021	×			

Requested Deliverables

ALL	ESDAT	REPORTS	

ALL ESDAT REPORTS		
- EDI Format - ESDAT (ESDAT)	Email	emmconsulting@esdat.net
ALL INVOICES		
- A4 - AU Tax Invoice (INV)	Email	finance@emmconsulting.com.au
HENRY NOAKES		
 *AU Certificate of Analysis - NATA (COA) 	Email	hnoakes@emmconsulting.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	hnoakes@emmconsulting.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	hnoakes@emmconsulting.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	hnoakes@emmconsulting.com.au
- Chain of Custody (CoC) (COC)	Email	hnoakes@emmconsulting.com.au
- EDI Format - ENMRG (ENMRG)	Email	hnoakes@emmconsulting.com.au
- EDI Format - ESDAT (ESDAT)	Email	hnoakes@emmconsulting.com.au
Katharine Bond		
- A4 - AU Tax Invoice (INV)	Email	kbond@emmconsulting.com.au
		-

<u>ـــــ</u>	CHAIL CUST	IN OF Ph: 08 8359	0890 E: ad E 32 Shand	Road Pooralka SA 5095 elnido@alsglobal.com Street Stafford OLD 4053	Ph: 07 4944 0	177 E: mackay@	Mackay QLD 4740 ⊉alsglobal.com Road Springvale VI			Phr 02 4014 2500	5/585 Maitland Rd) F: samples.newca Geary Place North I	⊧stle@alsg!obal	.com	Ph: 02 878	Y 277-289 Woodpark Road Smithfield NSV 34 8555 E: samplos.sydncy@alsglobal.con	m
Str.	ALS La	aboratory: QGLADSTO	NE 46 Call	mules.brisbane@akglobal.com oniondah Drive Clinton QLD 4680 idstone@alsglobal.com	Ph: 03 8549 9	Swinov Parel	.melbourne@alsglo Mudgee NSW 2850 mail@alsglobal.com	obal.com	· ·	Ph: 024423 2063	E: nowra@alsglob Way Malaga WA E: samples.porth(al.com 6090		Ph: 07 4796 UWOLLON	/ILLE 14-15 Desma Court Bohle QLD 4818 8 0600 E: townsville.environmental@alsglobal IGONG 99 Kenny Street Wollongong NSV	əl.com
CLIENT:	EMM Consulting Pty Ltd		TURN	AROUND REQUIREMENTS :			st due date):				- c. complexition (5 3125 E: portkembla@alsglobel.com	1. State
OFFICE:	Sydney		(Standa	ard TAT may be longer for some tests tra Trace Organics)			urgent TAT (Li	st due	date): 2 dat	v furnaroud			tody Seal Inte		ONLY (Circle)	
PROJEC	T: J190166 - Menangle Quarry			QUOTE NO.:					2		MBER (Circle	J Free	ice / frozen i	bricks pres	sent upon	N/4
ORDER	UMBER: J190166							c	, 0C: 1		4 5 6	rece	1612) 1612	Temperature (and the second	N/A
PROJEC	MANAGER: Katharine Bond / Henr	ry Noakes CONTACT F	PH: 0439	604 035 / 0448 772 835					- DF: 1	2 3	4 5 6		er comment.	remperature		
SAMPLE	R: Steve Rocks	SAMPLER	OBILE:	: 0414 776 988	RELINQUI	SHED BY:	<u>. </u>	R	ECEIVED E	3Y:	20		ISHED BY:		DEOFRIED DY	2.41
COC ema	lled to ALS? (<u>YES</u> / NO)	EDD FORM	AT (or d	efault):	1					Sam	NES	IN LEININGO	BILD BI.		A RIME	$\frac{2}{2}$
Email Re	ports to (will default to PM if no other a	addresses are listed): hnoakes@	emmco	nsulting.com.au	DATE/TIM	E:		D,	ATE/TIME:	2116		DATE/TIN	1E.		2018	2
Email Inv	oice to (will default to PM if no other a	addresses are listed): kbond@em	mconsu	itling.com.au	-						10pm		··		DATE/TIME:	124
COMMEN	TS/SPECIAL HANDLING/STORAGE	OR DISPOSAL:	_	· · · · · · · · · · · · · · · · · · ·	- L_						· F				12/10/21	10.
		en e					,				-					
ALS USE		E DETAILS JD (S) WATER (W)		- CONTAINER INFO	RMATION		ANALYSIS Where Meta	S REQU	IRED incluce	city Total (unfi	NB. Suite Codes tered bottle requ equired).	must be liste lired) or Diss	ed to attract s olved (field fi	uite price)	Additional Information	ion
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE to codes below)	, (refer	TOTAL CONTAINERS	General water suite NT-12		E						Comments on likely contaminant le dilutions, or samples requiring spe analysis etc.	evels, ecific QC
	BH01_D	21/06/2021 11:30	w			1 -	x					<u>} </u>	-		Please lab filter from unpreser for metals.	rved bottle
	BH01_S	21/06/2021 12:15	w			1	×									
S	BH02	21/06/2021 13:30:00 PM	w			1	x		1.	-						
	BH03	21/06/2021 15:00:00 PM	w			1	×								¥ .	
5	BH04	21/06/2021 15:30:00 PM	w			1	x	_								
													E	Inviron	nental Division	1
							· .	<u>.</u>	+				!	Sydney	Order Reference	
														ËŜ	Drder Reference	: ;
4																
ater Conta	iner Codes: P = Unpreserved Plastic; N HCI Preserved; VB = VOA Vial Sodium Bis ate Preserved Bottle; E = EDTA Preserved	= Nitric Preserved Plastic; ORC = Nit	ric Prese	rved ORC; SH = Sodium Hydroxide/Co	TOTAL Preserved; S	5 = Sodium Hy	5 droxide Preservi	ed Plas	lic; AG = Am	ber Glass Unn	reserved: AP - 4	irfreight Ung	received Di-	Telephon	e : + 61-2-8784 8555	

Appendix C

Groundwater sampling forms

Low Flow Sampling Record

I.D:

BHOI-D (SANDSTOND)

Project numbe Clien Field stat Weathe	t MONANG	J19016	Soil Bened	Sales Inti			mb toc	Final	ibration date SWL (mbtoc) Sample time ger installed ?		
Time	Volume	Yield	Temp	рН	EC	TDS		DO	Redox	Observatio	ns / olfactor
Time	L	L/s	°C ~±0.1	~±0.05	μs/cm ~ ± 5%	mg/L ~ ± 5%	%	mg/L	mV ~ ± 5%		rbidity, odour)
17:12	1	No. Start	18.6	6.43	1375	890.50	8.6	0.81	-81.8	YELLOW BRON	IN SLIGHT W
11:20	2	- has	18.6	6.60	1278	832.0	7.7	0.72	-90.2	u	11 1
11:23	3	1. 10	18.6	6.59	1241	806-0	8.7	0-81	-84-2	"	1.
11:20	20	1	18.3	6.62	1216	793.0	7.5	0.70	-84.1	10-	11 1
11:31	5		18.3	6.62	1219	793.0	7.1	0.66	-84.4	17	And the second
11:35	6		18.2	6.62	1217	793.0	6-9	0.65	- 84-4	11	1e 1
AMPLEDN		a line production	the second se						Contraction of the second		
and the second	4	-		Carrow Con		and the second					
-			and a start of	Maria			WAND I SH		1 DEMAN		12001
	a start			123/2h							1000
	in the second second	1212							1.		1
and the first	Marrie L								1.000000000		
		1 miles	and In		Control Control						1111
		2 de	Contract of	122			Section 1		A MARKET		-
			Sec. 1	236		Star Star	Contraction of				
					1111111111	and Music and Andrews	C. 21	and the second second	and and a start of the	la la la las	

Low Flow Sampling Record

I.D:

BHOI_S (ALLUNUM)

Date start / finish Project Project number Client Field staff Weather	MENANG J19016 BENEDICI SR	LE PARK	547-10 & 501L 55	S Initial	Well diameter (mm) 50 Stickup (magl)			San Water q Cali Final S	LOW FLOW BLADDER YSI PRO 18/6/21 YES	
Time	Volume	Yield	Temp	pН	EC	TDS	1	DO	Redox	Observations / olfactory
Time	L	L/s	°C ~±0.1	~±0.05	μs/cm ~ ± 5%	mg/L ~ ± 5%	%	mg/L	mV ~±5%	(Colour, turbidity, odour)
12:06	2	Constanting of the	18.1	4.91	4025 226.5	146.90	9.3	0.87	60.6	DIETS BROWN/ORANGE
12:08	4		18.2	5.05	222.8	144.30	7.4	0.69	48.6	a vr
12:10	5		18.3	5.17	219.4	142.35	5-4	0.5	320	11 11
12:12	6	Rep 12	18.3	5.20	222	144.30	4.4	0.41	27.6	te re
12:14	7	Station Park	18.3	5.22	224	145.6	4.3	0.41	28.1	GETTING GLEARER / No ODENR
12:16	8	1 Martin C.	18.3	5.23	227.2	147.55	4.5	0.43	30.0	u 4, 6
SAMPLED A -		The second								
		10-200	a fill share							
		Con The Con								
and the second		to la la								
Provide State		Chill Carl								
		C.C.	a section						and the second	And the second
		N. S. S.							Contraction of	The second second
		ST 15 2 2								The shall be a set of the
	-	110000	AND 24				States and			
		12 - 1	33.3	17-30 S 18			(Provins)	C. C	1218 424	
		and the	the second se	1 1 1 1 1		at and the second states and	the second second	and the second s	200	

Additional notes & CLEARER THAN FARST PURGE, STILL SLIGHT GRET.

Ħ

Low Flow Sampling Record

I.D:

BH02

	ff <u>sR</u> r <u>cleps</u> 2	LE PARK	SAND & SOIL	_ Inti	al TD (mbtod ell volume (L		4	2	Sample time ger installed ?	
			2 4 15 2 15			33.0 - 3	39.0 mb		-	· ·
Time	Volume	Yield	Temp	рН	EC	TDS	States States	DO	Redox	Observations / olfacto
	L	L/s	°C ~±0.1	~±0.05	μs/cm ~±5%	mg/L ~±5%	%	mg/L	mV ~±5%	(Colour, turbidity, odour)
13:00 *	-	-			129		Spin Parks			
Statute 1	18.7	1	18.7	5.80	7091	4608.5	15.8	1-44	-78.0	GREY, CLOUDY, SULPHONE
	1	Charles and								GREY, CLONDY, SURHOURD SAND/SUT PARTICLES
PLED @ 13:00			English And	and the second		A State of the				
S BAILER	3000	See See Se	N. W.R. M.	1 Starter					a stande	
	11 mar 2			13 31 22						States and
- Superior		2 Berlin							C. Martin	
Second 1		2002 1		Ent int			Children and and			
A				a la la la						
				S. Marines				A CONTRACTOR		1
			NELS SUM F	Sand F			Cast Charles			
the de		13 Million								
15	Senter P		300 C 11							
	10000	17025		1.5=8 4.5						
						Contraction of the second				
					1. Andrews		Second Second	in the second		
		Constant 1	Colore to	Line alle	Shad and	S. S	1. 1. 1. X. S. D.	State State	A Charles I	

A MARINE

*

55

Low Flow Sampling Record

I.D:

BHO3

Project number Client Field staff	MENANGL J19016 BENEDIO	E PARK :	SAND & Sal RIES	 Initia Inti	iameter (mm Stickup (mag Intial time SWL (mbtoc al TD (mbtoc ell volume (L) e)5.170)		Water Ca Fina		
	Volume	Yield	Temp	рН	EC	TDS		DO	Redox	Observations / olfactory
Time	L	L∕s	°C ~±0.1	~±0.05	μs/cm ~± 5%	mg/L ~±5%	%	mg/L	mV ~±5%	(Colour, turbidity, odour)
15:00	2		17.8	5=73	314.1	204.10	55.1	5.23	30.4	GREG-CLEAR, NO OPOUR
Additional notes 🗼	BAILED	PUE TO	ISSUES	WITH	BLADDER	PUMP.	* 6-	-7 mbgl	THE RAIL	ER STOPPED DUE
to POSSIBLE	OBSTRUCTION	l of ba	RE, ADSSI	sig Af	FTER FL	+0P5. +++	* sample	Recover	ed Fran	APPEOR. 6- TIMETOC

in

Low Flow Sampling Record

I.D:

creating opportunities									-	вноч
Date start / finish	18	106/21		Well di	iameter (mm)	50		Sa	mple method	BAILER (STAINWESS)
Project	MENANE			5	tickup (magl)			Water	quality meter	YSI PRO
Project number			part and		Intial time	15 States	and the second	Ca	libration date	18/6/21
Client	BENEDIC	+ INDUS	TRIES	Initial	SWL (mbtoc)	43.462	2	Final	SWL (mbtoc)	
Field staff		Construction of		Inti	al TD (mbtoc)	a har ben	a la la la		Sample time	1
Weather_	CLEAR	and the second	alating an	W	ell volume (L)	and the second second second second		_	ger installed ?	Y
and the second	-	here and the	AND ALL			BD @ 54			martin	
Time	Volume	Yield	Temp ℃	pH	EC	TDS	and the second	DO	Redox mV	Observations / olfactory
	L	L/s	~±0.1	~ ± 0.05	μs/cm ~ ± 5%	mg/L ~ ± 5%	%	mg/L	~± 5%	(Colour, turbidity, odour)
* 15:30	蹇]	and in	17.1	6.52	68,64	44 65.5	32.6	3.07	-64.7	SLIGHTY CLOUDY SLIGHT
* sampled -		all and and all a								SULPHOUROUS ODOUR
1779 SS BAILER	alex is	Lefter NP								
T. A. S. M. L.	an sta		and the second					Call and a		ALL AND AND AND
an The day of			and an and a							aller and the second second
and the second second	and and a second	in the	Signal Sta	Selle Sell			1.19			
	and and		2.350							
		and the second second	La mark	S. L. MA			Bary St			
Mai de la la		Stelance.	San Sil			and the second second		E Malling A.	Constant Second	14
and the second second			a service	Carlina -					Contraction of the	
	2715	4	G. C. Starting		- Ward	- and the		120.000		
		Section 1	and the state of the second	1.3.32			and the second second	Sec. 18	e ordenese i	
		All and and	and and and	4.14	and a little of			a strengtheres	A ALANDA	
	-			No Maria	A LATER AND					
	-		2 Brack		in the real of					
		and and a	and the							
Additional mater		State State	-	Seal State	A. D. S. T.		The Alaces	300		

additional notes SAMPLED USING BAILER. BAILED FROM WITHIN SCREENED INTERVAL APPROX. 57 MbTOC

Appendix E

Trigger	Action required	Timing	Follow up actions	Reporting*
Prior to extraction within substage				
Sand and soil extraction in the Stage 8 area.	Flood modelling to predict the peak flow velocities in potential extraction areas. Survey the extent of the exclusion zones – defined in the Consent as areas where predicted the peak flow velocity is >4 m/s during a 1% AEP flood.	Prior to extraction in each substage. Modelling for Substages 8A– 8C has been completed. Exclusion zones associated with substages 8A–8C have been surveyed by a registered surveyor in accordance with Development Consent 85/2865 (the Consent) Condition A22.	 Should scour occur that results in the loss of trees in the lower riverbank or Nepean River Buffer Zone: review, and if required, update flood modelling; and prepare Incident Report. 	
Ongoing during extraction				
Sand and soil extraction within an area that may be inundated by flooding of the Nepean River with a predicted peak flow velocity of ≤4 m/s during a 1% AEP flood.	 Quarry design to meet the requirements specified in: the Consent (including Conditions A10, B32, B71 and B72); the Applicant's Description of Amended Project (EMM 2019); and the environmental management plans. Inspections to review compliance against the quarry design. The base of the active extraction area is to remain 1 m above the water table in accordance with Consent Condition B22. 	Ongoing implementation of quarry design. Weekly inspections.	 If the quarry does not meet the design requirements (eg batter angles are too steep), undertake earthmoving operations to ensure that quarry design conforms with the approved design. If any extraction is identified outside of the surveyed extraction area or within the exclusion zone: cease work in this area immediately; report as an incident/non-compliance as described in Section 8 of the Menangle Sand and Soil Quarry Environmental 	 Incident Report: providing details of non- compliance and corrective/remedial actions. Annual report: progress of actions arising from incident report; and summary of compliance with the Consent design and environmental management plans relevant this TARP.

Trigger	Action required	Timing	Follow up actions	Reporting*
	The maximum length of the riverside batter that has a slope between 1:1 and 1:5 will be		Management Strategy (EMS) and prepare Incident Report; and	
	restricted to 30-m long so that it can be returned to a 1:5 batter within 12 hours if flooding is predicted. The riverside batter will have a slope of no more than 1:5 in the final landform.		• rehabilitate the area in accordance with the Menangle Sand and Soil Quarry Biodiversity and Rehabilitation Management Plan (BRMP).	
	Commence rehabilitation of completed extraction area as soon as practicable, always ensuring that the active extraction	Ongoing implementation of quarry design. Weekly inspections of active	If any extraction is identified outside of the surveyed extraction area or within the exclusion zone:	Incident Report: providing details of non- compliance and corrective/remedial actions. Annual Report:
	area is no more than 0.33 ha, in accordance with Consent Condition B72.	quarry area, including installation of pegs/flagging to mark the exclusion zone.	 cordon off part of the extraction area such that the active extraction area is ≤0.33 ha; 	 progress of actions arising from incident report; and
		Monthly review of active quarry area using most	 commence rehabilitation as described in the BRMP in the cordoned off area; and 	 summary of weekly inspections and monthly reviews.
		recent NearMap (or equivalent) images.	 report as an incident/non-compliance as described in Section 8 of the EMS and prepare Incident Report. 	
	Install woody debris in rehabilitation area (as required by Consent Condition B78) and in restoration area as described in BRMP Section 7.5.	Ongoing.	Annual monitoring to confirm that woody debris meets the requirements of Consent Condition B78 (see BRMP Section 8.4).	Report woody debris installation over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
	Woody debris should be used to pin brush or mesh surface cover.			

Trigger	Action required	Timing	Follow up actions	Reporting*
Sand and soil extraction within an area that may be inundated by flooding of the Nepean River with a predicted peak flow velocity of >4 m/s during a 1% AEP flood.	 Do not extract sand and soil within the exclusion zone, where predicted the peak flow velocity is >4 m/s during a 1% AEP flood as provided in Appendix 2 of the Consent. As described in Section 2.3.3 of the <i>Applicant's Description of Amended Project</i>, a qualified surveyor has undertaken the following: mark the boundary of the extraction area closest to the river as defined by the 64 m AHD contour; mark the extent of the 10-m wide horizontal setback area; mark all living native trees with their trunk within the 10-m wide horizontal setback area; place a peg 7.5 m horizontally landward of each tree within the 10-m wide horizontal setback area – marking the extent to which the existing bank will be retained, ie forming the 10-m to 17.5-m wide horizontal setback area; mark all other boundaries of the adjacent restoration (no resource extraction) area. 	substage.	If any extraction is identified outside of the surveyed extraction area or within the exclusion zone: • cordon off part of the extraction area such that the active extraction area is ≤0.33 ha; • commence rehabilitation as described in the BRMP in the cordoned off area; and • report as an incident/non-compliance as described in Section 8 of the EMS and prepare Incident Report.	 Incident Report: providing details of non-compliance and corrective/remedial actions. Annual report: progress of actions arising from incident report; and summary of compliance with quarry design.

Trigger	Action required	Timing	Follow up actions	Reporting*
Prior to flooding (Flood Manag	gement TARP actions relevant to substages 8/	A–8C)		
Stand-by: Bureau of Meteorology (BoM) issues 'flood watch' for Nepean River catchment. 'Flood watch' generally issued up to four days in advance of the expected onset of flooding but maybe as short as 12 hours.	Inform quarry personnel that flooding may impact the quarry in the coming days. Continue to monitor rainfall and flood watch advice.	Immediately following the 'flood watch' notification being received by the quarry.	Inform quarry personnel if BoM updates 'flood watch' so that flooding is no longer expected.	-
Risk level to be advised : BoM issues 'flood warning' for Nepean River catchment in vicinity of the quarry.	Inform quarry personnel that flooding within the Nepean River may inundate quarrying areas. Monitor rainfall and flood warning advice hourly.	Immediately following the 'flood warning' notification being received by the quarry	Continue to monitor BoM flood severity for updates. Proceed to next level of TARP if flood severity classed as 'minor'.	-
<i>Minor:</i> Nepean River flooding adjacent to the quarry is predicted to exceed 64 mAHD (ie a predicted Menangle Weir level of 63.5 mAHD).	, 8	Immediately (if safe to do so) following the prediction that flood levels will exceed 64 mAHD.	Continue to monitor BoM flood severity for updates. Proceed to next level of TARP if flood severity classed as 'moderate'. Proceed to 'event over' when flood warning removed.	-

Trigger	Action required	Timing	Follow up actions	Reporting*
	changes in slopes, particularly at the intersections of different batters.			
	• Move all plant and infrastructure from the active extraction area to higher ground (above predicted maximum flood level).			
	Sand face stabilisation and installation of pinning mesh or brush on potential erosion areas with particular focus in low areas where concentrated flood flows may enter or leave the extraction area.			
<i>Moderate:</i> Nepean River flooding adjacent to the quarry is predicted to exceed	predicted maximum predicted flood level).	Immediately (if safe to do so) following the prediction that flood levels will exceed 66 mAHD.	Continue to monitor BoM flood severity for updates. Proceed to next level of TARP if flood	-
66 mAHD – access road between site entry and operations area becomes inundated.			severity classed as 'major'. Proceed to 'event over' when flood warning removed.	
adjacent to the quarry is	Evacuate personnel from the site.	following the prediction that	Continue to monitor BoM flood severity for updates.	-
predicted to exceed 74 mAHD – entire site inundated		flood levels will exceed 74 m AHD.	Proceed to 'event over' when flood warning removed.	
to return or flood levels have receded below 64 m AHD.	Assess and report any damage to the active extraction area and operations area.	Within 5 days or as soon as practical following the 'event over' trigger is actioned.	Debrief all key personnel and update/modify the FMP as necessary.	-
	Remediate areas of damage, including clearing of debris and areas undergoing rehabilitation at the time of the flood event.			
	Recommence quarrying activities.			

Trigger	Action required	Timing	Follow up actions	Reporting*
Post-flood event				
Following a minor, moderate or major flood event.	Inspect the following areas that have been inundated:	Within 24 hours of floodwater receding.	Implement corrective actions for other triggers as required (see below).	Annual Report: summary of floods in preceding 12 months.
	 lower riverbank and NRBZ adjacent to substages 8A–8C; 			
	 rehabilitation area; and 			
	active extraction area.			
Any tree, major roots have been exposed, the roots have		Within 24 hours of floodwater receding.	······································	Incident Report: arborist findings and proposed remedial actions.
tilted or the tree appears to				Annual Report: progress of actions arising
be unstable.			 the tree is to be inspected by an arborist and remedial actions implemented; and 	from incident report.
			 report as an incident/non-compliance as described in Section 8 of the EMS and prepare Incident Report. 	
Rehabilitation areas have	ney restore the final landform level. event.			Annual Report:
been scoured such that they				 report any occurrences;
are below the final landform level (approximately 64 m AHD).				 if scouring occurs, summarise revegetation performance for flood hazard reduction; and present remedial actions.
			Revegetate (see below).	 present remedial actions.

Trigger	Action required	Timing	Follow up actions	Reporting*
Vegetation in post-extraction rehabilitation areas has been swept away.	Rehabilitate the area in accordance with the BRMP including:addition of soil ameliorants if required;	e Within 1 month of re- establishing the final landform.	Monitor rehabilitation in accordance with the BRMP.	Annual Report: report any occurrences and remedial actions.
	 placement of woody debris if density no longer meets the requirements of Consent Condition B78; and 			
	 infill seeding or planting. 			
Woody debris placed in post- extraction rehabilitation areas has been washed away.	Felled habitat trees and woody debris will be preserved for rehabilitation and restoration purposes.		Monitor woody debris placement in accordance with the BRMP Section 8.4.	Report woody debris installation over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
	Woody debris will be placed over the ground in rehabilitation areas and pressed in or tracked-rolled to ensure intimate contact with soil to minimise the potential for erosion under the woody debris.			
	Woody debris should be used to pin brush or mesh surface cover.			
Batters in extraction area have been scoured such that they are too steep and no	Infill scoured batters with sand and soil to ensure that they meet the maximum batter angle requirements.	Within 1 week of the flood event.	Review batter angles as part of weekly site inspections to ensure that quarry design conforms with the approved design.	Annual Report: report any occurrences and remedial actions.
longer meet the maximum batter angle requirements.			Undertake further rectification earthworks if required.	

Trigger	Action required	Timing	Follow up actions	Reporting*
The base of the active extraction area has been scoured such that it is with 1 m of the normal water	Infill the base of the active extraction with sand and soil to ensure that it is not below the maximum depth (within 1 m of the normal water table).	Within 1 week of the flood event.	Measure the depth to groundwater using the bores in the active extraction area. Undertake further rectification earthworks if required.	Annual Report: report any occurrences and remedial actions.
table.	Reinstall bores in the base of the extraction area in accordance with the <i>Menangle Sand</i> and Soil Quarry Soil and Water Management Plan (SWMP).	the extraction Menangle Sand		
Trees in the lower riverbank or NRBZ adjacent to the active	If roots of the tree are no longer providing bank stability, install measures, eg coir	Within 2 weeks of the flood event.	Inspect area as part of the drainage, erosion and sediment control inspections (see	Incident Report: description of tree loss and proposed remedial actions.
extraction area or rehabilitation area have been	matting, large rocks or rip rap, around the previous root area to prevent erosion. If part of the roots remain in the soil, leave in situ to allow the roots to continue to provide bank stability. Remove the upper part of the tree (chainsaw) to reduce the risk of the tree being washed away in subsequent flooding. If required, install		SWMP Section 8):weekly during normal operations;	Annual Report: progress of actions arising from incident report.
uprooted.			 daily during periods of rainfall; and 	nom incluent report.
And/or Remnant native vegetation in floodplain strips immediately upstream or downstream of the active extraction area has been swept away.			 within 12 hours of the cessation of a rainfall event (greater than 10 mm) causing runoff to occur on, or from, the quarry. 	
	measures to prevent erosion. Bank stabilisation and installation of pinning		Undertake further stabilisation works if required.	
	mesh or brush on potential erosion areas.		Should scour occur that results in the loss of trees:	
			 review, and if required, update scour flood model; and 	
			prepare Incident Report.	

Trigger	Action required	Timing	Follow up actions	Reporting*
	Install measures, eg coir matting, large rocks or rip rap, in and around the scour area to	Within 1 week of the flood event.	Inspect area as part of the drainage, erosion and sediment control inspections:	Incident Report: report on extent of bank loss and proposed remedial actions.
extraction area or	prevent erosion.		 weekly during normal operations; 	Annual Report: progress of actions arising
rehabilitation area is scoured such that the top of the lower	Rehabilitate and revegetate area.		 daily during periods of rainfall; and 	from incident report.
riverbank is reduced to less than 64 mAHD or the bank becomes unstable.		rainfa causir	 within 12 hours of the cessation of a rainfall event (greater than 10 mm) causing runoff to occur on, or from, the quarry. 	
			Undertake further stabilisation works if required.	
			Report as an incident/non-compliance as described in Section 8 of the EMS.	
Sediment from the Stage 8	geomorphologist to assess the potential impacts of the deposited sediment on river	•	of To be determined as part of the sediment removal plan.	Incident Report:
area deposits in the Nepean River such that river flow is		Plan preparation within 2 Report as an incident/non-complia		 report on extent of incident;
impeded.			Report as an incident/non-compliance as described in Section 8 of the EMS.	 geomorphologist report on impacts and proposed remedial actions; and
	sediment is likely to be removed by river flow.	Required works within 2 months of plan finalisation.		 aquatic ecologist report on impacts and proposed remedial actions.
	Inspection by an appropriately qualified aquatic ecologist to determine if the changed flow conditions are likely to cause impacts to aquatic biodiversity.			Annual Report: progress of actions arising from incident report.
	If significant impacts are predicted, prepare and implement a plan to remove the sediment. The sediment will be returned to the Stage 8 area.			

* See Menangle Sand and Soil Flood Management Plan.

Appendix F

Trigger	Action required	Timing	Follow-up actions	Reporting*
Controlling threats				
Livestock incursions, or evidence thereof (trampling,	Ongoing incidental observations.	Ongoing	Repair damage; inspect and repair fence- lines.	Annual Report: report any occurrences and remedial actions.
grazing, scats) Undesirable access to the property by people, or evidence thereof (litter, vandalism).			Reseed, replant tube stock as required.	
Increased feral pest sightings within Stage 8 area.	Ongoing incidental observations.	Ongoing	Baiting and trapping programs, if there is an increasing trend in feral animal sightings.	Annual Report: report any occurrences and remedial actions.
Bushfire within Stage 8 area.	Bushfire hazards are managed.	Incident based	In a fire occurs:	Annual Report: report any bushfires and
	Control uncontrolled burns on site as soon as possible.		 investigate cause of burn and if any preventative measures can be taken; 	investigation outcomes.
			 review erosion and sediment control measures in the burn area; 	
			 observe recovery of vegetation; and 	
			 undertake additional seeding/in-fill planting as required. 	
Active rill, gully or tunnel erosion.	Drainage, erosion and sediment control inspections (see <i>Menangle Sand and Soil</i> <i>Quarry Soil and Water Management Plan</i> (SWMP) Section 8).	Weekly inspections (see SWMP Section 8.2)	Ameliorate to stop erosion as per methods in the SWMP.	Annual Report: summary of weekly inspections and remedial actions required.
Physical conditions				
Growth medium development unsuitable	Collect and analyse soil samples at selected floristic monitoring plots (see BRMP Table 8.6).	Annual	Ameliorate soil if outside desired range and is impacting plant growth and condition.	Report landform establishment and stability assessment (including growth medium development) over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in the <i>Menangle Sand and</i> <i>Soil Quarry Biodiversity and</i> <i>Rehabilitation Management Plan</i> (BRMP) Section 8.8.

Trigger	Action required	Timing	Follow-up actions	Reporting*
Species composition				
Native trees: total foliage cover of species allocated to Tree (TG) growth form is not trending towards the benchmark range of 27.5–32.5.	Implement revegetation of rehabilitation area as described in BRMP Chapters 4–6. Biodiversity monitoring (see BRMP Section 8.4).	Progressive revegetation Annual monitoring	If foliage cover is not trending towards target value (ie by 5 years post-establishment), increase species cover and abundance via infill seeding and/or planting.	Report floristic monitoring over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
Native shrubs: total foliage cover of species allocated to Shrub (SG) growth form is not trending towards the benchmark range of 21–31.	Implement revegetation of rehabilitation area as described in BRMP Chapters 4–6. Biodiversity monitoring (see BRMP Section 8.4).	Progressive revegetation Annual monitoring	If foliage cover is not trending towards target value (ie by 5 years post-establishment), increase species cover and abundance via infill seeding and/or planting.	Report floristic monitoring over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
Native grasses (or grasslike): total foliage cover of species allocated to Grass and Grasslike (GG) growth form is not trending towards the benchmark range of 24.45– 30.45.	Implement revegetation of rehabilitation area as described in BRMP Chapters 4–6. Biodiversity monitoring (see BRMP Section 8.4).	Progressive revegetation Annual monitoring	If target value is not being met, increase species cover and abundance as early as possible (ie 2 years post-establishment). This should be achieved by planting, hydro- mulching, etc., depending upon conditions.	Report floristic monitoring over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
Native forbs: total foliage cover of species allocated to Forb (FG) growth form is not trending towards the benchmark range of 24.45– 30.45.	Implement revegetation of rehabilitation area as described in BRMP Chapters 4–6. Biodiversity monitoring (see BRMP Section 8.4).	Progressive revegetation Annual monitoring	If target value is not being met, increase species cover and abundance as early as possible (ie 2 years post-establishment). This should be achieved by planting, soil amelioration, hydro-mulching, etc. depending upon conditions.	Report floristic monitoring over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
Species diversity: after 5 years of management in a given area, at least 24 species characteristic of River-flat Eucalypt Forest are not present.	Implement revegetation of rehabilitation area as described in BRMP Chapters 4–6. Biodiversity monitoring (see BRMP Section 8.4).	Progressive revegetation Annual monitoring	Undertake in-fill planting of additional species from BRMP Table 5.1 that are not growing adequately or that have died. This should be done as soon as possible (ie 2 years post-establishment).	Report floristic monitoring over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.

Trigger	Action required	Timing	Follow-up actions	Reporting*
Weed cover in the rehabilitation and restoration areas is not decreasing based on annual monitoring.	Weed control as described in BRMP Section 5.5. Given the very high weed current loads, it is expected that it will take some time for weed growth to be brought under control and will require ongoing maintenance with the objective to eventually achieve a sum foliage cover of species identified as 'high threat exotic' under the Biodiversity Assessment Method (BAM) and 'priority weeds' as identified by the Local Land Services (LLS) in the relevant strategic weed management plan for the region is no more than 2%. Biodiversity monitoring (see BRMP Section 8.4).	Annual monitoring.	Evaluate weed management methods. Consider trialling different weed management techniques. Increase intensity of weed control.	Report the results of weed mapping in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
Ecosystem function				
Plant species not regenerating after disturbance event.	Implement revegetation of rehabilitation area as described in BRMP Chapters 4–6. Biodiversity monitoring (see BRMP Section 8.4).	Incident based, including inundation.	Infill seeding/planting as required.	Report floristic monitoring over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Repor- as described in BRMP Section 8.8.
Litter is not increasing towards the target value of 40% cover.	Biodiversity monitoring (see BRMP Section 8.4).	Annual monitoring.	If litter cover is not increasing after 5–10 years post-establishment, additional canopy species will need to be planted.	Report litter as part of floristic monitoring over the last 12 months in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
Nest boxes are missing or are not suitable for use by the target species (see BRMP Table 7.2).	Install 106 nest boxes will be (see BRMP Section 7.5.1).	Install nest boxes prior to extraction in the Stage 8 area. Annual monitoring (see BRMP Section 8.4).	Repair damaged nest boxes. Install the deficit number of nest boxes.	Report results of nest box survey in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.

Trigger	Action required	Timing	Follow-up actions	Reporting*
 Woody debris is not installed in accordance with Consent Condition B78: at least 400 m/ha of woody debris (ie. logs > 10 cm diam, >0.5 m long); and 	Woody debris will be placed over the ground in rehabilitation areas and pressed in or tracked-rolled to ensure intimate contact with soil to minimise the potential for erosion under the woody debris (see BRMP Section 7.5.2).	Once within 18 months of commencing extraction of each substage. Annual monitoring (see BRMP Section 8.4).	Install the deficit amount of woody debris. Report as an incident/non-compliance as described in Section 8 of the EMS.	Report results of woody debris survey in the Rehabilitation and Restoration Site Annual Progress Report as described in BRMP Section 8.8.
 at least 100 m/ha of large woody debris (ie. logs >50cm diam, >0.5 m long). 	Woody debris should be used to pin brush or mesh surface cover.			

* Annual report: summarising any triggers that have been exceeded in the last 12 months and the actions taken in response; and providing a list of any incident reports in the last 12 months and reporting on the progress of follow up actions arising from each incident report.

Significant incidents in relation to this TARP are to be reported to NRAR immediately in accordance with Consent Condition D7.

www.emmconsulting.com.au